首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chlorine residuals and haloacetic acid reduction in rapid sand filtration
Authors:Chuang Yi-Hsueh  Wang Gen-Shuch  Tung Hsin-hsin
Institution:a Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 10673, Taiwan
b Institute of Environmental Health, National Taiwan University, R753, 7F., No. 17, Xuzhou Rd., Taipei 100, Taiwan
Abstract:It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development—a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Clthreshold) for biodegradation was estimated at 0.46-0.5 mg L−1. The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Clthreshold influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.
Keywords:Rapid sand filtration  Biodegradation  Chlorine residual  Haloacetic acid  Backwash
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号