首页 | 本学科首页   官方微博 | 高级检索  
     


Grid lysimeter study of steady state chloride transport in two Spodosol types using TDR and wick samplers.
Authors:P Seuntjens  D Mallants  N Toride  C Cornelis  P Geuzens
Affiliation:Vito, Flemish Institute for Technological Research, Mol, Belgium. seuntjep@vito.be
Abstract:Solute transport in soils is affected by soil layering and soil-specific morphological properties. We studied solute transport in two sandy Spodosols: a dry Spodosol developed under oxidizing conditions of relatively deep groundwater and a wet Spodosol under periodically reducing conditions above a shallow groundwater table. The wet Spodosol is characterized by a diffuse and heterogeneous humus-B-horizon (i.e., Spodic horizon), whereas the dry Spodosol has a sharp Spodic horizon. Drainage fluxes were moderately variable with a coefficient of variation (CV) of 25% in the wet Spodosol and 17% in the dry Spodosol. Solute transport in 1-m-long and 0.8-m-diameter soil columns was investigated using spatial averages of solute concentrations measured by a network of 36 Time Domain Reflectometry (TDR) probes. In the dry Spodosol, solute transport evolves from stochastic-convective to convective-dispersive at a depth of 0.25 m, coinciding with the depth of the Spodic horizon. Chloride breakthrough at the bottom of the soil columns was adequately well predicted by a convection-dispersion model. In the wet Spodosol, solute transport was heterogeneous over the entire depth of the column. Chloride breakthrough at 1 m depth was predicted best using a stochastic-convective transport model. The TDR sampling volume of 36 probes was too small to capture the heterogeneous flow and concomitant transport in the wet Spodosol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号