首页 | 本学科首页   官方微博 | 高级检索  
     

BiVO4表面氧缺陷调控及其光催化氧化三价砷
引用本文:闫敬超,施钦,李欢松,戴世华,甘林萌,董慧峪,朱倩颖,刘绍刚,谭学才,高健. BiVO4表面氧缺陷调控及其光催化氧化三价砷[J]. 环境科学学报, 2021, 41(6): 2120-2130
作者姓名:闫敬超  施钦  李欢松  戴世华  甘林萌  董慧峪  朱倩颖  刘绍刚  谭学才  高健
作者单位:广西民族大学化学化工学院, 林产化学与工程国家民委重点实验室, 广西林产化学与工程重点实验室, 广西林产化学与工程协同创新中心, 南宁 530006;中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085;1. 广西民族大学化学化工学院, 林产化学与工程国家民委重点实验室, 广西林产化学与工程重点实验室, 广西林产化学与工程协同创新中心, 南宁 530006;2. 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085;北部湾大学石油与化工学院, 钦州 535011
基金项目:国家自然科学基金(No.21976040,21667005);广西自然科学基金(No.2018GXNSFBA050002);广西科技重大专项(No.桂科AA18118013);广西高校中青年教师科研基础能力提升项目(No.2019KY0187);广西高等学校高水平创新团队及卓越学者资助计划(No.桂教人[2020]6号);广西民族大学校级引进人才科研启动项目(No.2018KJQD07,2018MDYB005);广西民族大学研究生教育创新计划项目(No.gxun-chxzs2019022);广西区级大学生创新创业训练计划项目(No.202010608140,201810608003,201810608004)
摘    要:以乙二醇为溶剂,采用溶剂热-煅烧法制备缺陷型BiVO4光催化剂,通过控制溶剂热反应时间调控BiVO4表面氧缺陷以增强对As (III)的光催化氧化性能.同时,借助各种表征手段如XRD、SEM和XPS等分析样品的晶型结构、形貌特征及化学组成等性质,考察其在可见光下对As(III)的光催化氧化性能,并研究其氧化机理.结果表明,溶剂热反应时间对BiVO4的晶粒尺寸和光吸收性能没有影响,但能通过影响比表面积调控BiVO4的表面氧缺陷浓度.经优化得到,反应时间为14 h时制备的BiVO4光催化剂(BiVO-14)对As(III)(6 mg·L-1)的氧化效率高达95.7%,并具有良好的光催化稳定性.BiVO4氧化As (III)的主要途径是光生空穴(h+)的直接氧化作用.表面氧缺陷能增强导电性能,促进电荷分离和迁移,强化h+的氧化作用,从而提高BiVO4的光催化氧化性能.BiVO-14能有效促使As(III)转化为低毒的As(V),在饮用水源As污染去除方面具有广阔应用前景.

关 键 词:溶剂热  钒酸铋  光催化氧化  氧缺陷  
收稿时间:2021-01-19
修稿时间:2021-04-08

Regulation of BiVO4 surface oxygen defects and photocatalytic oxidation of arsenic trivalent
YAN Jingchao,SHI Qin,LI Huansong,DAI Shihu,GAN Linmeng,DONG Huiyu,ZHU Qianying,LIU Shaogang,TAN Xuecai,GAO Jian. Regulation of BiVO4 surface oxygen defects and photocatalytic oxidation of arsenic trivalent[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2120-2130
Authors:YAN Jingchao  SHI Qin  LI Huansong  DAI Shihu  GAN Linmeng  DONG Huiyu  ZHU Qianying  LIU Shaogang  TAN Xuecai  GAO Jian
Affiliation:Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chmeistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006;Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085;1. Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chmeistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006;2. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085; School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011
Abstract:In this study, defect type BiVO4 photocatalyst was prepared by the solvent heat-calcination method with ethylene glycol as solvent. To enhance the photocatalytic oxidation of As(III), BiVO4 surface oxygen defects were regulated by controlling the time of the solvent thermal reaction. Various methods, such as XRD, SEM and XPS, were utilized to investigate the crystal structure, morphological characteristics and chemical composition of the samples, along with assessments of the photocatalytic performances and the mechanism of As(III) oxidation under visible light irradiation. The results showed that the duration of the solvent thermal reaction did not affect the grain size or light absorption by BiVO4, but it regulated the surface oxygen defect concentration by affecting the specific surface area of the BiVO4. After optimizing the preparation of the BiVO4 photocatalyst was optimum when prepared by 14 h of solvent thermal reaction (BiVO-14), and 95.7% oxidation efficiency was achieved for As(III) (6 mg·L-1). The catalyst also had good photocatalytic stability. The main pathway for As(III) oxidation by BiVO4 is via direct oxidation of a photogenerated hole (h+) as a result of enhancement of electrical conductivity, and promotion of charge separation and migration by surface oxygen defects. BiVO-14 can effectively promote the conversion of As(III) into As(V) which has lower toxicity, and thus potentially has widespread applications in the amelioration of As toxicity in drinking water sources.
Keywords:solvothermal  bismuth vanadium  photocatalytic oxidation  oxygen defect  arsenic
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号