首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation北大核心CSCD
作者单位:1.Chengdu Institute of Biology, Chinese Academy of Science, Chengdu610041;2.University of Chinese Academy of Sciences, Beijing100049;
基金项目:Applied Basic Research Program of Sichuan Province;Applied Basic Research Key Project of Yunnan, (2017JY0065)
摘    要:A single chamber microbial fuel cell (MFC) with three-dimensional electrodes packed bed carbon felts was developed to treat domestic wastewater while simultaneously generating electricity. The influence of batch and continuous operation mode on treatment effectiveness and electricity production of the MFC was investigated to provide a reference for the application of the MFC. The MFC with a total working volume of 1 440 mL was operated in the fed-batch mode for 5 d repeatedly three times, and then shifted to the continuous mode. During the testing of the continuous mode, wastewater was continuously pumped into the anode compartment at a flow rate of approximately 0.2 mL/min, resulting in a hydraulic retention time of 5 d. During the batch test, the MFC obtained 91.1% chemical oxygen demand (COD) and 98.2% NH4 +-N removal, which accorded with the first criteria specified in the discharge standard of pollutants for municipal wastewater treatment plants in China (GB18918-2002). A maximum power density of 27.88 mW/m3 was achieved at a 51 Ω external resistor. During the continuous test, the COD removal efficiencies ranged from 83.2% to 97.4%. The concentration of NH4 +-N gradually decreased within 5 d and was then maintained below 9.45 mg/L, thus an enhanced removal performance of NH4 +-N was acquired. However, a low removal efficiency of total nitrogen was observed owing to the accumulation of NO3 --N in the effluent since day 11. Additionally, the MFC continually generated electricity with a maximum power density of 582.5 mW/m3 and average output voltage of 0.087 7 V during the stable period in the continuous operation mode. Moreover, 16S rRNA gene high-throughput sequencing showed that Thauera sp., Saprospiraceae-UN sp., and OPB56-UN sp. were identified as dominant populations. The results suggested that the organic matter associated with power generation was constantly utilized by the microorganisms in the reactor, which caused an excellent electricity generation performance during the continuous test. Therefore, the continuous operation mode could improve the low output voltage phenomenon in the MFC. Thauera sp., as a type of nitrate-reducing bacteria, was enriched in the autotrophic denitrifying microbial communities; therefore, bio-enrichment with denitrifying bacteria such as Thauera sp. could decrease the concentration of NO3 --N in the effluent during the continuous operation mode, which is expected to be an innovation for improvement of wastewater treatment. © 2018 Science Press. All rights reserved.

本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号