首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monolignol biosynthesis and genetic engineering of lignin in trees, a review
Authors:Vincent L Chiang
Institution:(1) Forest Biotechnology Group, Department of Forestry, College of Natural Resources, North Carolina State University, Raleigh, NC 27519, USA
Abstract:This paper summarizes our previous and current research on genetic engineering of lignin biosynthesis for the purposes of improving wood pulping and bleaching efficiency. For these purposes, our targets were to produce transgenic trees with low content of lignin that is also chemically reactive (high lignin S/G ratio). Using aspen as a model species, we have characterized the biochemical functions of various genes and the kinetic properties of these gene products involved in monolignol biosynthetic pathway. The results of these characterizations proved strong evidence for a principle phenolic flux leading to the formation of monolignols. Biochemical evidence further demonstrated that, in this principle flux, 4CL could be the enzyme limiting total lignin accumulation, whereas CAld5H might control the lignin S/G ratio. These propositions were fully supported by the in vivo functions of these enzymes. Transgenic trees with inhibited 4CL enzyme activity exhibited 5–45% reduction in lignin contents. The chemical structure of the resulting lignin remained essentially unchanged. More importantly, the lignin reduction was compensated for by a concomitant increase in cellulose content. When antisense 4CL and sense coniferaldehyde 5-hydroxylase (CAld5H) genes were simultaneously transferred into aspen via Agrobacterium, transgenic trees expressing each one and both of the transgenes were produced. Lignin reductions up to 55% were achieved in antisense 4CL plants and up to 3-fold S/G increases were observed in sense CAld5H plants. These effects were independent but additive, with plants expressing both transgenes having less lignin and higher S/G ratio. Consistent with our previous results, lignin reduction has always resulted in an increase in cellulose content. These transgenics could be potentially valuable for pulp production. But more importantly, these benchmark transgenics are rich sources of information for functional genomics and metabolic engineering, allowing the generation of the ultimate raw materials for wood pulp production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号