首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III)
Authors:Stewart Brandy D  Amos Richard T  Fendorf Scott
Institution:Environmental Earth System Science, Stanford Univ., Stanford, CA 94305, USA. brandy.stewart@erc.montana.edu
Abstract:Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号