Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions |
| |
Authors: | Huayu Wang Changbin Zhang Hong He Lian Wang |
| |
Affiliation: | State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China |
| |
Abstract: | A novel silica catalyst was synthesized by evaporation-induced self-assembly (EISA) method and tested for the catalytic selective hydrolysis of cellulose to glucose. This silica catalyst exhibited a higher catalytic activity than other oxides prepared by the same method, such as ZrO2, TiO2, and Al2O3. Using silica as a catalyst, cellulose was selectively hydrolyzed into glucose with a glucose yield as high as 50% under hydrothermal conditions without hydrogen gas. The silica catalyst was characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results of temperature-programmed desorption of ammonia (NH3-TPD) and textural properties indicated that the synergistic effect between strong acidity and a suitable pore diameter of the silica catalyst may be responsible for its high activity. In addition, the catalyst was recyclable and showed excellent stability during the recycle catalytic runs. |
| |
Keywords: | cellulose glucose silica catalyst hydrolysis hydrothermal biomass |
本文献已被 ScienceDirect PubMed 等数据库收录! |
| 点击此处可从《环境科学学报(英文版)》浏览原始摘要信息 |
|
点击此处可从《环境科学学报(英文版)》下载全文 |
|