aCalifornia Institute of Technology, Pasadena, CA, USA
bFM Global, Research, 1151 Boston-Providence Turnpike, Norwood, MA 02062, USA
Abstract:
A three-dimensional gasdynamic model with constant burning rate is applied for the prediction of the maximum pressure rise from gaseous combustion in vented enclosures. A series of calculations for an enclosure with aspect ratio close to unity are presented. Both cases with and without obstacles in the enclosure are considered. Results of calculations are compared with a simple 0D solution for spherical vessels. It is shown that, in cases without obstacles, the 0D solution for the maximum reduced overpressures is close to the predictions of the detailed modeling. In cases with obstacles, the detailed simulation gives significantly higher overpressures than those from the 0D model. However, in all the cases the reduced pressures are correlated well with the maximum flame surface area.