首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study
Authors:C. C. Chien  C. M. Kao  C. W. Chen  C. D. Dong  H. Y. Chien
Affiliation:Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
Abstract:The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (<0.035 mg l(-1)) and HAAs (<0.019 mg l(-1)) concentrations were observed at all sampling locations. Results from the observed negative Langelier Saturation Index (LSI) values, higher Ryznar Stability Index (RSI) values, and high Fe3+ concentrations at some pipe-end locations indicate that highly oxidative and corrosive conditions occurred. This reveals that pipe replacement should be considered at these locations. These findings would be helpful in managing the water distribution system for maintaining a safe drinking water quality.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号