首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and experiments of polydisperse particle clouds
Authors:Adrian?C.?H.?Lai  author-information"  >  author-information__contact u-icon-before"  >  mailto:adrian.lai@smart.mit.edu"   title="  adrian.lai@smart.mit.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Ruo-Qian?Wang,Adrian?Wing-Keung?Law,E.?Eric?Adams
Affiliation:1.Center for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology Centre,Singapore,Singapore;2.Department of Civil and Environmental Engineering,University of California,Berkeley,USA;3.School of Civil and Environmental Engineering,Nanyang Technological University,Singapore,Singapore;4.Department of Civil and Environmental Engineering,Massachusetts Institute of Technology,Cambridge,USA
Abstract:A model for polydisperse particle clouds has been developed in this study. We extended the monodisperse particle cloud model of Lai et al. (Environ Fluid Mech 13(5):435–463, 2013) to the case of polydisperse particles. The particle cloud is first considered to be a thermal or buoyant vortex ring, with the thermal induced velocity field modeled by an expanding spherical Hill’s vortex. The buoyancy of the composite thermal is assumed to be the sum of buoyancy contributed by the all particles inside the thermal. Individual particles (of different particle properties) in the cloud are then tracked by the particle tracking equation using the computed induced velocity field. The turbulent dispersion effect is also accounted for by using a random walk model. Experiments of polydisperse particle clouds were carried out to validate the model. The agreement between model predictions and experiments was reasonable. We further validate our model by comparing it with the LES study of Wang et al. (J Hydraul Eng ASCE 141(7):06015006, 2014). The limitations of our model are then discussed with reference to the comparison. Overall, although some flow details are not captured by our model, the simplicity and generality of the model makes it useful in engineering applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号