首页 | 本学科首页   官方微博 | 高级检索  
     


Reactively Compatibilized Cellulosic Polylactide Microcomposites
Authors:Birgit Braun  John R. Dorgan  Daniel M. Knauss
Affiliation:(1) Department for Chemical Engineering, Colorado School of Mines, Golden, CO 80401, USA;(2) Department for Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA
Abstract:Poly(lactic acid) (PLA) possesses a suite of favorable material properties that are enabling its penetration into diverse markets (e.g., as packaging material or textile fibers). In order to increase the range of applications for this material, it is necessary to modify its properties and for certain applications, reduce its cost. The introduction of fibers into a polymeric matrix is an established route towards property enhancement provided good dispersion and intimate interfacial adhesion can be achieved. In addition, cellulosic microfibers are obtainable at low to moderate cost. In this study, reactive compatibilization of cellulosic fibers with PLA is pursued. Hydroxyl groups available on the surface of cellulosic fibers are used to initiate lactide polymerization. Various processing strategies are investigated: (1) blending preformed PLA with the fiber material, (2) through a one-step process in which lactide is polymerized in the presence of the fibers alone, or (3) reactive compatibilization in the presence of preformed high molecular weight polymer. The results show that materials prepared by simultaneous introduction of lactide and preformed high molecular PLA at the beginning of the reaction possess superior mechanical properties compared to composites made by either purely mechanical mixing or solely polymerization of lactide in the presence of fibers. The modulus of materials containing 25% fibers which are prepared by reactive compatibilization of 30% preformed PLA and 70% lactide (30/70 P/L) improves by 53% compared to the homopolymer, whereas 36% reinforcement can be achieved upon purely mechanical mixing. A further increase to 35% fiber loading leads to a reduction in modulus due to an excess in initiating groups. The same trend was observed in systems containing 65% preformed PLA and 35% lactide (65/35 P/L) with an overall achievable reinforcement that was slightly lower.
Keywords:Reactive compatibilization  PLA microcomposites  cellulose fibers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号