首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genetic Structure of Endangered Clapper Rail (Rallus longirostris) Populations in Southern California
Authors:ROBERT C FLEISCHER  GARTH FULLER †  DAVID B LEDIG ‡
Institution:Molecular Genetics Laboratory, Department of Zoological Research, National Zoological Park, Smithsonian Institution, Washington, D.C. 20008, U.S.A.; Department of Biological Sciences, University of California, Santa Barbara, CA 93106, U.S.A.
Abstract:We assessed the genetic structure of two subspecies of endangered Clapper Rails ( Rallus longirostris ) in Southern California using DNA fingerprinting to uncover variation in minisatellite DNA. Minisatellite DNA variation in the Salton Sea population of the R. l. yumanensis subspecies was at a level typical of outbred avian species (average proportion of fragments shared, or S, was 0.33). Variation was extremely low (S from 0.63 to 0.77), however, within four coastal, salt-marsh populations of the subspecies R. l. levipes located along a transect extending about 260 km northwest from the Mexican border. Between-population similarity (Sij) was also high for the four levipes populations, although individuals of the small, isolated population at Mugu Lagoon consistently clustered separately in phenograms constructed using neighbor-joining or other algorithms. Individuals of yumanensis always clustered as a sister group to all levipes individuals. The minisatellite data were contrasted with the extremely low mtDNA and RAPD variation we found in both subspecies. We propose that variation in these less-mutable markers was lost in a bottleneck that occurred at least 1000 years ago, thus allowing sufficient time for recovery of variation in the rapidly mutating (μ≈} 0.001/gamete/generation) minisatellites (t = 1/μ, or 1000 generations). A second, more-recent bottleneck, or series of bottlenecks within a metapopulation structure, likely resulted in the depauparate variation seen in levipes today. We suggest that translocations from large to small levipes populations could restore important genetic variation to the small populations and would not compromise genetic boundaries.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号