首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancement of natural radioactivity in fertilized soil of Faisalabad, Pakistan
Authors:Nasim-Akhtar  Sabiha-Javied  M Tufail
Institution:Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan. drnasimakhtar@rocketmail.com
Abstract:

Background, goal, and scope

Natural radioactivity in phosphate rock (PR) is transferred to phosphate fertilizer (PF) during the manufacturing process of the PF. The continuous addition of the PF to the cultivated soil accumulates the radionuclides in the land and increases the level of radioactivity in the soil. The purpose of the present study was to investigate the enhanced level of accumulated radioactivity due to the continuous addition of the PF in the farmlands of Nuclear Institute of Agriculture and Biology (NIAB) at Faisalabad in Pakistan. The selected study area consisted of the highly fertilized farmlands and an unfertilized barren land of the NIAB.

Introduction

The understudy area is very fertile for the growth of various types of crops; therefore, four agricultural research institutes have been established at Faisalabad and NIAB is one of those. The NIAB has developed various research farmlands at different places in Pakistan. The crop yield has been increased by adding various fertilizers in the farmlands. The addition of the PF accompanied with the radionuclides enhances radioactivity in the fields. Human being is exposed directly or indirectly to this radiological hazard. A prolong exposure may become a cause of health risk.

Materials and methods

The area of study consisted of three types of lands: the land under cultivation for the last 40 and 30?years called Site 1 and Site 2, respectively, and the barren land was called Site 3. A total of 75 soil samples were collected within the crop rooting zone (up to 25?cm deep) of the soil of the NIAB farms. The samples were dried, pulverized to powder, sealed in plastic containers, and stored to achieve equilibrium between 226Ra and 222Rn. Activity concentrations of the radionuclides 238U (226Ra), 232Th, and 40K in soil samples were determined by using a high resolution gamma ray spectrometry system, consisting of an high purity germanium detector coupled through a spectroscopy amplifier with a PC based MCA installed with Geni-2000 software.

Results

The measured activity concentration levels of 40K were 662?±?15, 615?±?17, and 458?±?20?Bq?kg?1, 226Ra were 48?±?6, 43?±?5, and 26?±?4?Bq?kg?1, and that of 232Th were 39?±?5, 37?±?5, 35?±?5?Bq?kg?1, respectively, in the soil of the Sites 1, 2, and 3. Gamma dose rate 1?m above the soil surface was 55, 51, and 40?nGy?h?1 from Sites 1, 2, and 3, respectively. External dose rates in the rooms constructed of the bricks made of the soil from Sites 1, 2, and 3 were 161, 149, and 114?nGyh?1, respectively.

Discussions

Activity concentration values of 40K and 226Ra in the soil of Sites 1 and 2 were higher than that in the soil of Site 3. The relative rise of 40K was 43?% and 34?% and that of 226Ra was 85?% and 65?% respectively in these sites. Activity concentrations of 232Th in all these sites were in the background range. Gamma dose rate 1?m above soil surface of Sites 1 and 2 was 40?% and 30?% respectively higher than that from the soil of Site 3. The rise in activity of 40K and 226Ra and gamma dose from the Site 1 was greater than that from the Site 2. The least activity and dose were observed from the Site 3. Gamma dose in the dwellings made of fertilized soil bricks of Site 1 and Site 2 were respectively calculated to be 41?% and 32?% higher than that in the abodes made of unfertilized soil bricks of Site 3.

Conclusions

Activity concentrations of 226Ra and 40K were observed to be enhanced in the fertilized farmlands of the NIAB. Outdoor and indoor gamma dose as radiological hazard were found to be increasing with the continuous addition of PF in the understudy farmlands.

Recommendations

It is recommended that naturally occurring radioactive metal should be removed during the process of manufacturing of the PF from the PR.

Prospective

The rise in radioactivity in the farmlands due to the addition of the PF can be a source of direct or indirect exposure to radiation that may enhance cancer risk of the exposed individuals.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号