首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of injection system design on ISCO performance with permanganate--mathematical modeling results
Authors:Cha Ki Young  Borden Robert C
Affiliation:North Carolina State University, Raleigh, NC 27695, USA. kycha@ncsu.edu
Abstract:In situ chemical oxidation (ISCO) using permanganate (MnO(4)(-)) can be a very effective technique for remediation of soil and groundwater contaminated with chlorinated solvents. However, many ISCO projects are less effective than desired because of poor delivery of the chemical reagents to the treatment zone. In this work, the numerical model RT3D was modified and applied to evaluate the effect of aquifer characteristics and injection system design on contact and treatment efficiency. MnO(4)(-) consumption was simulated assuming the natural oxidant demand (NOD) is composed of a fraction that reacts instantaneously and a fraction that slowly reacts following a 2nd order relationship where NOD consumption rate increases with increasing MnO(4)(-) concentration. MnO(4)(-) consumption by the contaminant was simulated as an instantaneous reaction. Simulation results indicate that the mass of permanganate and volume of water injected has the greatest impact on aquifer contact efficiency and contaminant treatment efficiency. Several small injection events are not expected to increase contact efficiency compared to a single large injection event, and can increase the amount of un-reacted MnO(4)(-) released down-gradient. High groundwater flow velocities can increase the fraction of aquifer contacted. Initial contaminant concentration and contaminant retardation factor have only a minor impact on volume contact efficiency. Aquifer heterogeneity can have both positive and negative impacts on remediation system performance, depending on the injection system design.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号