首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The importance of chemical buffering for pelagic and benthic colonization in acidic waters
Authors:Nixdorf  B  Lessmann  D  Steinberg  C E W
Institution:(1) Chair of Water Conservation, Faculty of Environmental Sciences, Brandenburg University of Technology at Cottbus, Seestraße 45, 15526 Bad Saarow, Germany;(2) Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Abstract:In poorly buffered areas acidification may occur for two reasons: through atmospheric deposition of acidifying substances and – in mining districts – through pyrite weathering. These different sources of acidity lead to distinct clearly geochemistry in lakes and rivers. In general, the geochemistry is the major determinant for the planktonic composition of the acidified water bodies, whereas the nutrient status mainly determines the level of biomass. A number of acidic mining lakes in Eastern Germany have to be neutralized to meet the water quality goals of the European Union Directives and to overcome the ecological degradation. This neutralization process is limnologically a short-term maturation of lakes, which permits biological succession to overcome two different geochemical buffer systems. First, the iron buffer system characterizes an initial state, when colonization starts: there is low organismic diversity and productivity, clear net heterotrophy in most cases. Organic carbon that serves as fuel for the food web derives mainly from allochthonous sources. In the second, less acidic state aluminum is the buffer. This state is found exceptionally among the hard water mining lakes, often as a result of deposition of acidifying substances onto soft water systems. Colonization in aluminum-buffered lakes is more complex and controlled by the sensitivity of the organisms towards both, protons and inorganic reactive aluminum species. In soft-water systems, calcium may act as antidote against acid and aluminum; however, this function is lost in hard water post mining lakes of similar proton concentrations. Nutrient limitations may occur, but these do not usually control qualitative and quantitative plankton composition. In these lakes, total pelagic biomass is controlled by the bioavailability of nutrients, particularly phosphorus.
Keywords:acidic lakes  buffering  colonization  deposition acidified soft water lakes  geochemistry  lake classification  mining lakes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号