首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phylogenetic diversity of NO reductases,new tools for nor monitoring,and insights into N2O production in natural and engineered environments
Authors:Sung-Geun Woo  Holly L Sewell  Craig S Criddle
Institution:1. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA2. NSF Engineering Research Center, Re-Inventing the Nation’s Urban Water Infrastructure (ReNUWIt), Stanford University, Stanford, CA 94305, USA
Abstract: ● 548 representative nor genes were collected to create complete phylogenetic trees. ● The distribution of nor and nod genes were detected in 18 different phyla. ● The most conserved amino acids in NOR were located adjacent to the active site. nor-universal and Clade-specific primers were designed, suggested, and tested. Nitric oxide reductases (NORs) have a central role in denitrification, detoxification of nitric oxide (NO) in host-pathogen interactions, and NO-mediated cell-cell signaling. In this study, we focus on the phylogeny and detection of qNOR and cNOR genes because of their nucleotide sequence similarity and evolutionary relatedness to cytochrome oxidases, their key role in denitrification, and their abundance in natural, agricultural, and wastewater ecosystems. We also include nitric oxide dismutase (NOD) due to its similarity to qNOR. Using 548 nor sequences from publicly accessible databases and sequenced isolates from N2O-producing bioreactors, we constructed phylogenetic trees for 289 qnor/nod genes and 259 cnorB genes. These trees contain evidence of horizontal gene transfer and gene duplication, with 13.4% of the sequenced strains containing two or more nor genes. By aligning amino acid sequences for qnor + cnor, qnor, and cnor, we identified four highly conserved regions for NOR and NOD, including two highly conserved histidine residues at the active site for qNOR and cNOR. Extending this approach, we identified conserved sequences for: 1) all nor (nor-universal); 2) all qnor (qnor-universal) and all cnor (cnor-universal); 3) qnor of Comamonadaceae; 4) Clade-specific sequences; and 5) nod of Candidatus Methylomirabilis oxyfera. Examples of primer performance were confirmed experimentally.
Keywords:N2O  Greenhouse gas  NO reductase  NO dismutase  Primer  Crystal structure  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号