首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework
Authors:Yuping Wang  Jing Xia  Yanxin Gao
Institution:1. Department of Environmental Science and Engineering, Fuzhou University, Minhou 350108, China2. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract: ● A series of mixed-LOFs and portable LOF-fibers were synthesized. ● LOF-S3 was selected as a luminescent sensor for antibiotics. ● Mixed-LOF was capable of decoding antibiotics by emission intensity ratios. ● Linear relationship between antibiotic concentration and I545nm/I618nm was observed. Due to the potential risk of antibiotics to the environment, the development of inexpensive, simple, and reliable antibiotic detection methods is significant but also faces challenges. In this work, several lanthanide-organic frameworks (LOFs), constructed from lanthanide ions (Eu3+ and/or Tb3+) and 1,3,5-benzene-tricarboxylic acid (BTC), were synthesized by solvothermal method. LOF-S3 with comparable emission peaks of 5D47F5 (Tb3+, 545 nm) and 5D07F2 (Eu3+, 618 nm) was selected as a luminescent sensor. In this system, the highly efficient energy transferred from the organic linker to lanthanide ions and from Tb3+ to Eu3+ occurs. LOF-S3 sensor was capable of decoding antibiotics by distinguishable emission intensity ratios. Therefore, a two-dimensional decoded map of antibiotics was established. The linear relationship between antibiotic concentration and emission intensity ratio indicated the quantitative determination of antibiotics was feasible. As a typical analyte, the response mechanism of nalidixic acid (NA) was investigated in detail. The competition of NA and BTC for UV light absorption, as well as the binding propensity of NA and Tb, affected the organic linkers-to-lanthanide ions and Tb-to-Eu energy transfer, resulting in the change of fluorescence intensity ratio. The self-calibrating mixed-LOF sensor overcame the uncontrollable errors of the traditional absolute emission intensity method and generated stable luminescent signals in multiple cycles. Furthermore, the integration of LOF-S3 with polymer fibers enabled the formation of a LOF-polymer fibrous composite with fluorescence detection capability, which is a promising portable sensor for practical applications.
Keywords:Antibiotics  Sensor  Luminescence  Lanthanide-organic frameworks  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号