首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon budget of the Canadian forest product sector
Institution:1. Economics and Management College, Northwest Agricultural and Forestry University of China, 712100, China;2. China National Forestry Economics and Development Research Center, Beijing 100714, China;3. Canadian Forest Service, Atlantic Forestry Center, P.O. Box 4000, 1350 Regent Street, Fredericton, NB E3B 5P7, Canada;4. Economics and Management College, China Agricultural University, No. 17 Qinghua East Road, 100081 Beijing, China
Abstract:Although many factors influencing the forest C cycle are beyond direct human control, decisions made in forestry and the forest product sector (FPS) can either mitigate or aggravate the net C balance of terrestrial ecosystems. The Canadian Budget Model of the Forest Product Sector (CBM-FPS) described here, was designed to work with a national scale model of forest ecosystem dynamics (the Carbon Budget Model of the Canadian Forest Sector, CBM-CFS). The CBM-FPS accounts for harvested forest biomass C from the time that it enters the manufacturing process until it is released into the atmosphere. It also accounts for the use and production of energy by the FPS, and emission of CO2 during FPS processing. The CBM-FPS accounting framework uses the characteristics of different forest product types to estimate changes in the storage of C in forest products; it tracks C from the transportation of the harvested raw material through various processing steps in sawmills or pulp mills, to its final destination (product, pulp, landfill, atmosphere or recycled). Because not all harvested biomass C is released into the atmosphere in the year it is harvested, the model tracks C retained in various short- and long-lived products, and in landfills. Model results are in general agreement with available data from 1920–1989. Average changes in net C stocks in the FPS, estimated as the difference between harvest C input to the FPS and total losses from the forest product sector is estimated to be 23.5 Tg C yr?1 for the 1985–1989 period. The total FPS pool size at the end of this period is estimated to be 837 Tg C, of which only a fraction (32%) is retained in Canada. The total FPS C stock is small compared to that in the forest ecosystems from which they derive (estimated to contain 86 Pg C in 1989). Nevertheless, the changes in these C stocks contribute significantly to a reduction of the total net atmospheric exchange of the total forest sector (ecosystem and product sector) for that period.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号