首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and numerical investigation of constant volume dust and gas explosions in a 3.6-m flame acceleration tube
Institution:1. GexCon AS, Bergen, Norway;2. University of Bergen, Bergen, Norway;3. Mary Kay O''Connor Process Safety Center, TX, USA;4. Texas A&M University, College Station, TX, USA
Abstract:This paper describes an experimental investigation of turbulent flame propagation in propane-air mixtures, and in mechanical suspensions of maize starch dispersed in air, in a closed vessel of length 3.6 m and internal cross-section 0.27 m × 0.27 m. The primary motivation for the work is to gain improved understanding of turbulent flame propagation in dust clouds, with a view to develop improved models and methods for assessing explosion risks in the process and mining industries. The study includes computational fluid dynamics (CFD) simulations with FLACS and DESC, for gas and dust explosions respectively. For initially quiescent propane-air mixtures, FLACS over-predicts the rate of combustion for fuel-lean mixtures, and under-predicts for fuel-rich mixtures. The simulations tend to be in better agreement with the experimental results for initially turbulent gaseous mixtures. The experimental results for maize starch vary significantly between repeated tests, but the subset of tests that yields the highest explosion pressures are in reasonable agreement with CFD simulations with DESC.
Keywords:Dust explosions  Gas explosions  Dust flames  Computational fluid dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号