Counterintuitive effects of large-scale predator removal on a midlatitude rodent community |
| |
Authors: | Maron John L Pearson Dean E Fletcher Robert J |
| |
Affiliation: | Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA. john.maron@mso.umt.edu |
| |
Abstract: | Historically, small mammals have been focal organisms for studying predator-prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics exhibited by northern vole, lemming, and hare populations. However, many small-mammal species occur at relatively low and fairly stable densities at temperate latitudes, and our understanding of how complex predator assemblages influence the abundance and dynamics of these species is surprisingly limited. In an intact grassland ecosystem in western Montana, USA, we examined the abundance and dynamics of Columbian ground squirrels (Spermophilus columbianus), deer mice (Peromyscus maniculatus), and montane voles (Microtus montanus) on 1-ha plots where we excluded mammalian and avian predators and ungulates, excluded ungulates alone, or allowed predators and ungulates full access. Our goal was to determine whether the relatively low population abundance and moderate population fluctuations of these rodents were due to population suppression by predators. Our predator-exclusion treatment was divided into two phases: a phase where we excluded all predators except weasels (Mustela spp.; 2002-2005), and a phase where all predators including weasels were excluded (2006-2009). Across the entire duration of the experiment, predator and/or ungulate exclusion had no effect on the abundance or overall dynamics of ground squirrels and deer mice. Ground squirrel survival (the only species abundant enough to accurately estimate survival) was also unaffected by our experimental treatments. Prior to weasel exclusion, predators also had no impacts on montane vole abundance or dynamics. However, after weasel exclusion, vole populations reached greater population peaks, and there was greater recruitment of young animals on predator-exclusion plots compared to plots open to predators during peak years. These results suggest that the impacts of predators cannot be generalized across all rodents in an assemblage. Furthermore, they suggest that specialist predators can play an important role in suppressing vole abundance even in lower-latitude vole populations that occur at relatively low densities. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|