首页 | 本学科首页   官方微博 | 高级检索  
     检索      

核壳结构KNbO3@Co(OH)2的制备及其活化过一硫酸盐降解帕珠沙星的研究
引用本文:潘柏岳,陈龙,黄韬博,陶溪,孙丰宾,刘文,齐娟娟.核壳结构KNbO3@Co(OH)2的制备及其活化过一硫酸盐降解帕珠沙星的研究[J].环境科学学报,2020,40(6):2025-2036.
作者姓名:潘柏岳  陈龙  黄韬博  陶溪  孙丰宾  刘文  齐娟娟
作者单位:北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871,北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871,北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871,北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871,北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871,北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871;北京大学工程科学与新兴技术高精尖创新中心,北京100871;北京大学环境工程系北京市新型污水深度处理工程技术研究中心,北京100871,北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京100871;北京大学工程科学与新兴技术高精尖创新中心,北京100871
基金项目:中国博士后科学基金面上项目(No.2019M650007);国家自然科学基金项目(No.21906001)
摘    要:制备了以KNbO3为载体材料的Co(OH)2复合材料并对其进行了详细的表征,分析了材料的组成成分、组成形态进而确定了其为核壳结构形貌的KNbO3@Co(OH)2.利用合成的样品作为催化剂活化过一硫酸盐(peroxymonosulfate,PMS)来降解帕珠沙星(pazufloxacin,PZF),结果表明制备的催化剂对PZF的去除效率显著增加.讨论了不同初始PMS剂量对降解效率的影响,发现随着PMS增加可活化生成更多的硫酸根自由基(sulfate radicals,SO4·-)和羟基自由基(hydroxyl radicals,HO·)来降解PZF,但继续增大PMS用量降解效率未见明显提升.酸性和中性pH值条件下利于反应活化PMS降解PZF,而碱性体系减缓反应,甚至强碱体系更易形成Co(OH)2沉淀不利于反应体系中活性组分CoOH+的形成,大大抑制了催化性能.此外,在体系中加入淬灭剂叔丁醇(tert-Butanol,TBA)或者乙醇(ethanol,ETOH)进行自由基的淬灭实验,结果表明SO4·-自由基为体系降解PZF过程中主要贡献的自由基,而HO·自由基的贡献较少.催化剂具有较好的稳定性5次循环之后仍能在10 min之内完全去除PZF.本研究提出了新的思路为制备其他载体的Co(OH)2核壳结构提供参考依据,同时将该催化剂结合高级氧化技术应用到水体新兴有机污染物净化领域具有很好的应用前景.

关 键 词:核壳结构  KNbO3@Co(OH)2  过一硫酸盐(PMS)  硫酸根自由基  帕珠沙星
收稿时间:2019/12/9 0:00:00
修稿时间:2020/1/6 0:00:00

Core-shell KNbO3@Co(OH)2 preparation and peroxymonosulfate activation for degradation of pazufloxacin
PAN Po-Yueh,CHEN Long,HUANG Taobo,TAO Xi,SUN Fengbin,LIU Wen and QI Juanjuan.Core-shell KNbO3@Co(OH)2 preparation and peroxymonosulfate activation for degradation of pazufloxacin[J].Acta Scientiae Circumstantiae,2020,40(6):2025-2036.
Authors:PAN Po-Yueh  CHEN Long  HUANG Taobo  TAO Xi  SUN Fengbin  LIU Wen and QI Juanjuan
Institution:The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871,1. The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871;2. The Beijing Innovation Center for Engineering Science and Advanced Technology(BIC-ESAT), Peking University, Beijing 100871;3. Beijing Engineering Research Center for Advanced Wastewater Treatment, Department of Environmental Engineering, Peking University, Beijing 100871 and 1. The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871;2. The Beijing Innovation Center for Engineering Science and Advanced Technology(BIC-ESAT), Peking University, Beijing 100871
Abstract:In this study, KNbO3 was used to support Co(OH)2, and the composite material KNbO3@Co(OH)2 was fabricated into a core-shell structure based on the morphology and composition characterization. The synthesized material was applied as a heterogeneous catalyst to realize efficient activation of peroxymonosulfate (PMS) for pazufloxacin (PZF) removal. The effects of different initial PMS dosages on the degradation were investigated. It was found that with the increase of PMS, the generation of sulfate radicals (SO4·-) and hydroxyl radicals (HO·) were produced, leading to the increase of the degradation efficiency, but excessive PMS was not benefit to further PZF removal. The optimal pH for degradation were carried out under weak acidic or neutral pH conditions, while alkaline condition could slow down the reaction. Even higher alkaline were more likely to form Co(OH)2, which were adverse to the formation of the active component CoOH+, thus inhibiting reaction. Besides, quenching experiments by adding the tert-Butanol (TBA) or ethanol (ETOH), the results indicated that SO4·- radicals were predominant radicals. After five cycles, the catalyst was still good, as complete PZF removal was also achieved within 10 min. Finally, a new strategy for preparing the core-shell structure of Co(OH)2 by other carriers. The catalyst combined the advanced oxidation processes would have great application potential in the removal of emerging organic pollutants in water.
Keywords:core-shell structure  KNbO3@Co(OH)2  PMS  sulfate radicals (SO4·-)  pazufloxacin
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号