首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Hollow TiO2 spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage, carbonate-doping and the induced Ti3 +
摘    要:Great efforts have been devoted to improve the photocatalytic activity of TiO_2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO_2 spheres, which simultaneously realized these advantages. The synthesized TiO_2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m~2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti~(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO_2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO_2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.

收稿时间:2017/9/8 0:00:00

Hollow TiO_2 spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage,carbonate-doping and the induced Ti~(3+)
Authors:Guoliang Li  Chunyang Liao  Guibin Jiang
Abstract:Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile one-pot synthetic approach was developed to prepare C-doped hollow TiO2 spheres, which simultaneously realized these advantages. The synthesized TiO2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area (~ 180 m2/g) and versatile porous texture. Carbonate-doping was achieved by a post-thermal treatment at a relatively low temperature (200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti3 + induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO2 catalyst. It is not out of expectation that the as-prepared C-doped hollow TiO2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.
Keywords:Carbonate  Photo-degradation  Synergistic enhancement
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号