首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Pt/CeO2催化氧化甲苯反应机制研究
引用本文:李淑君,彭若斯,孙西勃,陈礼敏,付名利,吴军良,黄皓旻,叶代启.Pt/CeO2催化氧化甲苯反应机制研究[J].环境科学学报,2018,38(4):1426-1436.
作者姓名:李淑君  彭若斯  孙西勃  陈礼敏  付名利  吴军良  黄皓旻  叶代启
作者单位:华南理工大学环境与能源学院;挥发性有机物污染治理技术与装备国家工程实验室;广东省大气环境与污染控制重点实验室;广东省环境风险防控与应急处置工程技术研究中心;
基金项目:国家自然科学基金(No.51678245,51378218,51578245);中央高校基本科研业务费专项;广州市科技计划项目(No.201510010164);2015年广东省公益研究与能力建设专项(No.2015A020215010);2014年广东省自然科学基金博士科研启动项目(No.2014A030310431);国家重点研发计划项目(No.2016YFC0204203);广东省自然科学基金(No.2016A030311003)
摘    要:采用浸渍法制备了Pt/CeO_2和Pt/Al2O_3催化剂,并通过XRD、BET、ICP-OES、H2-TPR、XPS等手段表征其物理化学性质.结果发现,Pt/CeO_2和Pt/Al2O_3催化剂上Pt负载量约为0.6%,Al2O_3载体上Pt颗粒尺寸更小,Pt/CeO_2的可还原性更强.甲苯催化氧化活性评价结果表明,Pt/CeO_2催化剂表现出更好的催化活性,T50=170℃,T90=190℃.通过UV-Raman、甲苯TPD、GC/MS、In-situ FTIR等手段进一步研究发现,Pt/CeO_2活化甲苯及反应供氧的机制与Pt/Al2O_3存在区别,其活性更好是因为:(1)负载在CeO_2表面存在高电子密度的Pt原子,具有更强的活化甲苯能力,可以直接使苯基和甲基间的C—C链发生断裂;(2)Pt的负载促进了CeO_2氧空位形成,进一步提高了CeO_2的储氧性能,加速氧循环.除了Pt解离气相氧之外,CeO_2还可以提供活性氧物种参与催化氧化甲苯的反应,进一步提高甲苯催化氧化效率.

关 键 词:甲苯  催化氧化  Pt/CeO2  相互作用  原位红外
收稿时间:2017/9/16 0:00:00
修稿时间:2017/10/19 0:00:00

Mechanism research of toluene catalytic oxidation over Pt/CeO2 catalyst
LI Shujun,PENG Ruosi,SUN Xibo,CHEN Limin,FU Mingli,WU Junliang,HUANG Haomin and YE Daiqi.Mechanism research of toluene catalytic oxidation over Pt/CeO2 catalyst[J].Acta Scientiae Circumstantiae,2018,38(4):1426-1436.
Authors:LI Shujun  PENG Ruosi  SUN Xibo  CHEN Limin  FU Mingli  WU Junliang  HUANG Haomin and YE Daiqi
Institution:School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(SCUT), Guangzhou 510006;4. Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(SCUT), Guangzhou 510006;4. Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(SCUT), Guangzhou 510006;4. Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(SCUT), Guangzhou 510006;4. Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006 and 1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(SCUT), Guangzhou 510006;4. Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006
Abstract:Pt/CeO2 and Pt/Al2O3 catalysts were successfully prepared via wet impregnation method. The catalysts were characterized using XRD, BET, ICP-OES, H2-TPR, XPS techniques, the results showed that the Pt loading over two catalysts were approximately 0.6%. The Pt/Al2O3 catalyst had a smaller Pt particle size while the Pt/CeO2 catalyst had better reduction behavior. Then the catalytic oxidation of toluene was tested and the Pt/CeO2 catalyst exhibits higher catalytic activity than the Pt/Al2O3 catalyst. The reaction mechanism was further investigated by UV-Raman, toluene TPD, GC/MS and In-situ FTIR techniques. The Pt particle over Pt/CeO2 catalyst presents higher electron concentration, resulting in better activation of toluene molecules. The incorporation of Pt would increase the concentration of surface oxygen vacancies, as a result the CeO2 support could supply more reactive oxygen species and thus increase the catalytic activity for toluene oxidation.
Keywords:toluene  catalytic oxidation  Pt/CeO2  support metal strong interation  In-situ FTIR
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号