首页 | 本学科首页   官方微博 | 高级检索  
     

响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化
引用本文:李国君, 邱珊, 朱英实, 邓凤霞, 马放. 响应面法对泡沫铜阴极电芬顿产H2O2与·OH性能优化[J]. 环境工程学报, 2018, 12(1): 93-101. doi: 10.12030/j.cjee.201706051
作者姓名:李国君  邱珊  朱英实  邓凤霞  马放
作者单位:1.哈尔滨工业大学环境学院,哈尔滨 150090; 2.城市水资源与水环境国家重点实验室,哈尔滨 150090; 3.哈尔滨工业大学宜兴环保研究院,宜兴 214205
基金项目:城市水资源与水环境国家重点实验室自主课题(HCK201708) 国家重点研发计划项目(2016YFC0401102)
摘    要:泡沫金属因其三维结构及优良导电性,使其作为电芬顿阴极开始引起学者关注。选择泡沫铜为阴极、石墨棒为阳极,搭建微孔曝气均匀的玻璃反应器,提高体系传质效率,并通过响应面探索体系产H2O2和·OH的机理。用响应面设计3因素(pH、电流、Fe2+初始浓度)3水平实验,得到体系产H2O2和·OH与3种因素之间的非线性回归方程,得到最优条件:当pH=2、电流0.25 A、Fe2+初始浓度为15 μmol·L-1时H2O2产量最大,为457.27 μmol·L-1;当pH=2、电流0.25 A、Fe2+初始浓度为20 μmol·L-1时·OH产量最多,可达18.56 μmol·L-1。根据方差分析,二次模型显著性很高(R2H2O2=0.977 8,R2·OH=0.964 2),能够很好地模拟实验结果。通过铜溶出实验分析得出铜溶出量在0.4~1.8 mg·L-1之间,符合现行污水排入城镇下水道水质标准(CJ 343-2010)。

关 键 词:电化学   自由基   优化设计   泡沫铜   响应面模型   过氧化氢

Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode
LI Guojun, QIU Shan, ZHU Yingshi, DENG Fengxia, MA Fang. Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 93-101. doi: 10.12030/j.cjee.201706051
Authors:LI Guojun  QIU Shan  ZHU Yingshi  DENG Fengxia  MA Fang
Affiliation:1.School of Environment, Harbin Institute of Technology, Harbin 150090, China; 2.State Key Laboratory of Urban Water Resource and Environment, Harbin 150090, China; 3.Yixing Environmental Protection Research Institute of Harbin Institute of Technology, Yixing 214205, China
Abstract:Foam-metal used as cathode in electro-Fenton (EF) has attracted attention recently due to it three-dimensional structure and good conductivity. In this study, copper-foam and graphite rod were used as cathode and anode, respectively. Moreover, micro-porous aeration glass reactor was designed, aiming for improving the low oxygen mass transfer rate in the EF configuration. The mechanism involved electro-generated active oxygen species (H2O2 and ·OH) was investigated by response surface modeling method. The effect of the different parameters affecting the performance of active oxygen species generation was investigated, including pH, current density and initial ferrous concentration. Response surface modeling method, more specifically, Box-Behnken design (BBD) was used to optimize the above-mentioned parameters for active oxygen species generation and then to put forward polynomial models between these parameters and active oxygen species. Results show that significant polynomial models were obtained (R2H2O2=0.977 8,R2·OH=0.964 2) and optimal conditions was obtained from BBD were shown as follows:pH=2, ferrous concentration=15 μmol·L-1 and current=0.25 A for H2O2 generation, while pH=2, ferrous concentration=20 μmol·L-1 and current=0.25 A for hydroxyl radicals generation. The copper concentration released from copper-foam cathode ranged from 0.4 to 1.8 mg·L-1, lowering than the standard concentration (CJ 343-2010).
Keywords:electrochemistry  radical  optimization design  cupper foam  response surface modeling  hydrogen peroxide
本文献已被 CNKI 等数据库收录!
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号