首页 | 本学科首页   官方微博 | 高级检索  
     检索      

激光熔覆Ni基纳米复合涂层的冲蚀性能研究
引用本文:李守彪,万明奇,沈亮,时婧.激光熔覆Ni基纳米复合涂层的冲蚀性能研究[J].装备环境工程,2019,16(4):119-126.
作者姓名:李守彪  万明奇  沈亮  时婧
作者单位:青岛双瑞海洋环境工程股份有限公司,山东 青岛,266101;海洋石油工程股份有限公司,天津,300450;中国海洋大学 材料科学与工程学院,山东 青岛,266100
基金项目:国家自然科学基金(41406092)
摘    要:目的 对动态腐蚀条件下涂层的耐蚀性进行分析评估。方法 采用激光熔覆技术,在40Cr钢表面沉积Ni基纳米复合涂层。模拟真实的海洋环境,对Ni基涂层进行冲蚀实验,分析了海水冲击、颗粒磨损等外力作用与腐蚀之间的耦合作用对涂层性能的影响。选用自制的360°旋转冲刷机,研究含沙量、旋转速度对涂层耐蚀性的影响,并对冲蚀后的样品进行显微观察、质量损失分析和电化学性能的测试。结果 当含沙量为0.3%,腐蚀时间为48 h时,不同转速下耐蚀性由强到弱依次为300 r/min >600 r/min >900 r/min;腐蚀时间为96 h时,不同转速下耐蚀性由强到弱依次为300 r/min >900 r/min >600 r/min;腐蚀时间为144 h时,不同转速下耐蚀性由强到弱依次为300 r/min >900 r/min >600 r/min。当转速为600 r/min时,腐蚀时间由48 h进行到144 h,在无沙条件下,质量几乎没有变化,甚至有微小的增量;当含沙量为0.3%时,涂层的质量损失较为明显,冲蚀144 h后,质量损失达73.71 g/m2。结论 当含沙量一定,且冲刷速度较低时,腐蚀主要以电化学作用为主,提高转速,腐蚀速率加快。当转速一定时,腐蚀速率增大。在含沙量很高的情况下,腐蚀情况稍有减缓。

关 键 词:激光熔覆  Ni基合金涂层  抗冲蚀机制  电化学性能
收稿时间:2018/10/15 0:00:00
修稿时间:2019/4/25 0:00:00

Seawater Erosion-Corrosion Resistance of Ni-based Composite Coatings by Laser Cladding
LI Shou-biao,WAN Ming-qi,SHEN Liang and SHI Jing.Seawater Erosion-Corrosion Resistance of Ni-based Composite Coatings by Laser Cladding[J].Equipment Environmental Engineering,2019,16(4):119-126.
Authors:LI Shou-biao  WAN Ming-qi  SHEN Liang and SHI Jing
Institution:1. SunRui Marine Environment Engineering Co., Ltd, Qingdao 266101, China,2. Offshore Oil Engineering Co., Ltd, Tianjin 300450, China,2. Offshore Oil Engineering Co., Ltd, Tianjin 300450, China and 3. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Abstract:Objective To analyze corrosion resistance of coating under dynamic corrosion conditions. Methods The Ni- based composite coating was deposited on 40 Cr steels by laser cladding. The real marine environment was simulated to have washout test on the Ni-based coating and analyze the coupling effect of the external force, for instance the seawater impact, particle wear on the corrosion resistance of coating. The self-made 360° rotary scouring machine was selected to study the influences of erosion velocity and sediment concentration on the corrosion resistance of coating. The microstructure after erosion corrosion was observed by optical microscope, the weight loss and electrochemical property were also discussed. Results When the sediment concentration was 3%, the corrosion time was 48 h, the corrosion resistance sequence at different rotational speeds was 300 r/min > 600 r/min > 900 r/min. The corrosion resistance sequence at different rotational speeds was 300 r/min > 900 r/min > 600 r/min after 96-hour corrosion. It became 300 r/min > 900 r/min > 600 r/min after 144-hour of corrosion. At the circumstance of 600 r/min rotational speed and absence of sand, the weight was almost unchanged, and even increased slightly as the corrosion time varied from 48 h to 144 h; Whereas significant weight loss occurred at 3% sediment concentration, particularly, the weight loss increased to 73.71 g/m2 when the erosion time reached 144 h. Conclusion When the sediment concentration must be, and the erosion rate is low, mainly by the electrochemical corrosion effect is given priority to, improve the speed, the corrosion rate was accelerated. When the rotation speed must be corrosion rate increased. In the case of high sediment concentration, the corrosion situation slow down a bit.
Keywords:laser cladding  Ni-based composite coating  erosion-corrosion resistance mechanism  electro-chemical property
本文献已被 万方数据 等数据库收录!
点击此处可从《装备环境工程》浏览原始摘要信息
点击此处可从《装备环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号