摘 要: | 为更合理有效地解决煤矿开采引起的冲击地压危险性预测问题,以忻州窑煤矿冲击地压事故为工程背景,采用一种数据降维算法—主成分分析法(PCA),对广义回归神经网络(GRNN)的输入样本进行信息压缩,构建冲击地压危险性预测的PCA-GRNN模型。通过PCA法提取影响冲击地压强度的煤层厚度、倾角等9个因素,得到冲击地压危险性影响因素的前4个主成分因子表达式,并构建BPNN,GRNN和PCA-BP等另外3种模型,验证PCA-GRNN法预测冲击地压危险性的智能性和泛化能力。结果表明,所建PCA-GRNN模型平均训练误差为3.5%,平均预测误差为3.6%,有很好的预测能力和泛化能力。
|