首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in different organic matter fractions during conventional treatment and advanced treatment
Authors:Chao Chen  Xiaojian Zhang  Lingxia Zhu  Wenjie He and Hongda Han
Institution:1. School of Environment, Tsinghua University, Beijing 100084, China
2. T]anjin Waterworks Co., Ltd., Tianjin 300040, China
Abstract:XAD-8 resin isolation of organic matter in water was used to divide organic matter into the hydrophobic and hydrophilic fractions.A pilot plant was used to investigate the change in both fractions during conventional and advanced treatment processes. The treatment of hydrophobic organics (HPO), rather than hydrophilic organicas (HPI), should carry greater emphasis due to HPO's higher trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP). The removal of hydrophobic matter and its transmission into hydrophilic matter reduced ultimate DBP yield during the disinfection process. The results showed that sand filtration, ozonation, and biological activated carbon (BAC) filtration had distinct influences on the removal of both organic fractions.Additionally, the combination of processes changed the organic fraction proportions present during treatment. The use of ozonation and BAC maximized organic matter removal efficiency, especially for the hydrophobic fraction. In sum, the combination of pre-ozonation,conventional treatment, and O3-BAC removed 48% of dissolved organic carbon (DOC), 60% of HPO, 30% of HPI, 63% of THMFP,and 85% of HAAFP. The use of conventional treatment and O3-BAC without pre-ozonation had a comparable performance, removing 51% of DOC, 56% of HPO, 45% of HPI, 61% of THMFP, and 72% of HAAFP. The effectiveness of this analysis method indicated that resin isolation and fractionation should be standardized as an applicable test to help assess water treatment process efficiency.
Keywords:organic matter  hydrophobic  hydrophilic  polarity  drinking water treatment
本文献已被 维普 万方数据 ScienceDirect PubMed 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号