PROBABILISTIC METHODS IN STREAM QUALITY MANAGEMENT1 |
| |
Authors: | Stephen J. Burges Dennis P. Lettenmaier |
| |
Abstract: | ABSTRACT. Recent advances in water quality modelling have pointed out the need for stochastic models to simulate the probabilistic nature of water quality. However, often all that is needed is an estimate of the uncertainty in predicting water quality variables. First order analysis is a simple method of providing an estimate in the uncertainty in a deterministic model due to uncertain parameters. The method is applied to the simplified Streeter-Phelps equations for DO and BOD; a more complete Monte Carlo simulation is used to check the accuracy of the results. The first order analysis is found to give accurate estimates of means and variances of DO and BOD up to travel times exceeding the critical time. Uncertainty in travel time and the BOD decay constant are found to be most important for small travel times; uncertainty in the reaeration coefficient dominates near the critical time. Uncertainty in temperature was found to be a negligible source of uncertainty in DO for all travel times. |
| |
Keywords: | probabilistic methods uncertainty first order analysis Monte Carlo sampling water quality modelling stream quality management |
|