首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-term forest management and timely transfer of carbon into wood products help reduce atmospheric carbon
Authors:Guoliang Liu  Shijie Han
Institution:1. School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland;2. Basque Centre for Climate Change (BC3), 48008 Bilbao, Spain
Abstract:In their efforts to deal with global climate change, scientists and governments have given much attention to the carbon emissions associated with fossil fuels and to strategies for reducing their use. While it is very important to burn less fossil fuel and to employ alternative energy sources, other carbon-reduction options must also be considered. Given that forests comprise a large portion of the global landbase and that they play a very significant role in the global carbon cycle, it is logical to examine how forest management practices could effect reductions in carbon emissions. Many papers that discuss forest carbon sinks or sources refer only to the short term (<20 years). This paper focuses on the sustainable carbon storage contributions of a forest over the long term. This paper explains that long-term carbon storage and reduced carbon fluctuation can be achieved by a combination of improved forest management and efficient transfer of carbon into wood products. Here we show how three different forest management scenarios affect the overall carbon storage capacity of forest and wood products combined over the long term. We used a timber supply model and scenario analysis to predict forest carbon and other resource conditions over time in the Prince George Forest District, a 3.4-million-ha landbase in northern British Columbia. We found that the high-harvest scenario stores 3% more carbon than the low-harvest scenario and 27% (120 million tonnes) more carbon than the no-harvest scenario even though only 1.2-million ha is in timber harvesting landbase. Our results tell us that forest management practices that maintain and increase forest area, reduce natural disturbances in the forest, improve forest conditions, and ensure the appropriate and timely transfer of carbon into wood products lead to increasing overall carbon storage, thereby reducing carbon in the atmosphere.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号