首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously
Authors:Zhou Dong-Mei  Zorn Roman  Kurt Czurda
Institution:1. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;Department of Applied Geology, Karlsruhe University, Karlsruhe, Germany
2. Department of Applied Geology, Karlsruhe University, Karlsruhe, Germany
Abstract:This report examined electrochemical remediation of copper contaminated kaolinite by controlling electrolytes' pH for both of anolyte and catholyte simultaneously. Results showed that electrokinetic process and remediation efficiency varied obviously when different buffer systems, including citric acid (test 1 ) nitric acid + EDTA (test 2) and nitric acid (test 3), were used to control catholyte pH and Na2CO3 was used at the same time to control all anolyte one. It was found that under such pH condition soil's pH in soil column kept at 3.0-7.0 successfully, and correspondingly no copper precipitation and decrease of soil electroconductivity appeared, which are usually observed in electrokinetic process due to OH- introduction into soil column by electrochemical reaction occurred in cathode. Electroosmosis flow rates were almost equal for these three tests, indicating that these buffers did not affect Zeta-potential of kaolinite within the examined duration. More acid and basic solution was added into electrokinetic cell when nitric acid was used as buffer than when nitric acid + EDTA and then citric acid were used. Due to introduction of large amounts of ions into soil column, significant higher current was observed for test 3 than other two. Analysis of copper speciation and total quantity in kaolinite indicated that 22.5%, 23.74% and 55.65% Cu were removed from kaolinite for test 1, test 2 and test 3 respectively after only 10 days' electrokinetic remediation.
Keywords:copper  kaolinite  pH control  electrokinetic remediation
本文献已被 CNKI 维普 万方数据 PubMed 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号