首页 | 本学科首页   官方微博 | 高级检索  
     


Formation of Nitrate and Sulfate in the Plume of Berlin (8 pp)
Authors:Gerhard?Lammel  author-information"  >  author-information__contact u-icon-before"  >  mailto:lammel@dkrz.de"   title="  lammel@dkrz.de"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Adrian?Leip
Affiliation:Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. lammel@dkrz.de
Abstract:Background, Aims and Scope Secondary inorganic aerosol (SIA), i.e. particulate sulphate (S(VI)), ammonium and nitrate (N(V)) is formed from gaseous precursors i.e., sulfur dioxide (S(IV)), ammonia and nitrogen oxides, in polluted air on the time-scale of hours to days. Besides particulate ammonium and nitrate, the respective gaseous species ammonia and nitric acid can be formed, too. SIA contributes significantly to elevated levels of respirable particulate matter in urban areas and in strongly anthropogenically influenced air in general. Methods The near-ground aerosol chemical composition was studied at two stationary sites in the vicinity of Berlin during a field campaign in summer 1998. By means of analysis of the wind field, two episodes were identified which allow to study changes within individual air masses during transport i.e., a Lagrangian type of experiment, with one station being upwind and the other downwind of the city. By reference to a passive tracer (Na+) and estimates on dry depositional losses, the influences of dispersion and mixing on concentration changes can be eliminated from the data analysis. Results and Discussion Chemical changes in N(-III), N(V) and S(VI) species were observed. SIA i.e., N(V) and S(VI), was formed from emissions in the city within a few hours. The significance of emissions in the city was furthermore confirmed by missing SIA formation in the case of transport around the city. For the two episodes, SIA formation rates could be derived, albeit not more precise than by an order of magnitude. N(V) formation rates were between 1.4 and 20 and between 1.9 and 59 % h-1 on the two days, respectively, and S(VI) formation rates were > 17 and > 10 % h-1. The area south of the city was identified as a source of ammonia. Conclusion The probability of occurrence of situations during which the downwind site (50 km downwind of Berlin) would be hit by an urban plume is > 7.4%. Furthermore, for the general case of rural areas in Germany it is estimated that for more than half of these there is a significant probability to be hit by an urban plume (> 8%). The S(VI) formation rates are higher than explainable by homogeneous gas-phase chemistry and suggest the involvement of heterogeneous reactions of aerosol particles. Recommendation and Outlook The possible contribution of heterogeneous processes to S(VI) formation should be addressed in laboratory studies. Measurements at more than two sites could improve the potential of Lagrangian field experiments for the quantification of atmospheric chemical transformations, if a second downwind site is chosen in such a way that, at least under particular stability conditions, measurements there are representative for the source area.
Keywords:sulphur dioxide oxidation  atmospheric chemistry  nitrate  particulate matter  secondary inorganic aerosols  urban plume
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号