首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes
Authors:E D Houde
Institution:1. Division of Biology and Living Resources, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
Abstract:In larvae of the bay anchovy Anchoa mitchilli (Valenciennes), the sea bream Archosargus rhomboidalis (Linnaeus), and the lined sole Achirus lineatus (Linnaeus), growth, survival, and starvation times were investigated at temperatures of 22° to 32°C. The rate at which hours after hatching until starvation decreased in relation to temperature for unfed larvae did not differ significantly among the 3 species, ranging from-5.4 to-6.3 h per degree increase in temperature. The total number of hours until starvation did differ for all 3 species: lined soles survived longest, bay anchovies were intermediate, and sea bream survived the least time. At 28°C, unfed sea bream could survive 90.1 h, bay anchovy 102.3 h, and lined sole 119.8 h. The eyes pigmented at nearly the same time after hatching for sea bream and bay anchovy, but took about 20 h longer at all temperatures for lined sole. Quadratic equations best described the relationship between hours after hatching when the eyes became pigmented and temperature. Eye-pigmentation times became nearly constant for all 3 species at temperatures above 28°C. At 28°C, eyes pigmented about 27 h after hatching for bay anchovy and sea bream but not until 47 h for lined sole. Hours after eye pigmentation when unfed larvae starved was a measure of the effective time that larvae had to commence feeding. Bay anchovies and lined soles were nearly alike in this respect, but sea bream starved at tewer hours after eye pigmentation. Slopes of regressions representing decrease in times to staration for increasing temperatures ranged from-3.7 to-4.4 h per degree increase in temperature, and were not significantly different among the 3 species. At 28°C, unfed lined soles starved at 70 a after eye pigmentation, bay anchovies starved at 72.5 h, and sea bream at only 62 h. Yolk absorption was most rapid for all species during the first 20 h after hatching, and was faster at higher temperatures. Amounts of yolk remaining at the time eyes became pigmented were less at higher temperatures for bay anchovy and lined sole, but were greater for sea bream, suggesting that sea bream used yolk more efficiently at higher temperatures. Either no yolk or small traces (>0.20%) remained at 24 h after eye pigmentation in all 3 species. Feeding was delayed for periods of 8, 16, 24, 32, 40 and 48 h after eye pigmentation for all species at a series of experimental temperatures from 24° to 32°C. Growth and survival were affected when food was withheld for more than 24 h at 28°C, but survival did not decrease markedly until food was withheld at least 8 h longer. At lower temperatures food could be withheld longer and at higher temperatures for less time. Feeding can be initiated by most larvae for several hours after all visible yolk reserves have been exhausted. All species tested can survive for 24 to 40 h after eye pigmentation at 24° to 28°C without food and still have relatively good growth and survival when food is offered. If the “critical period” is considered relative to time of hatching, lined soles need not find food for 3 to 3.5 days after hatching, but bay anchovy and sea bream must feed within 2.5 days of hatching.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号