首页 | 本学科首页   官方微博 | 高级检索  
     

深圳市PM_(2.5)浓度特征及统计预报研究
引用本文:林楚雄,陈嘉晔,李红霞,徐伟嘉,游泳,许均政,李仕平. 深圳市PM_(2.5)浓度特征及统计预报研究[J]. 环境工程, 2017, 35(5): 87-92. DOI: 10.13205/j.hjgc.201705019
作者姓名:林楚雄  陈嘉晔  李红霞  徐伟嘉  游泳  许均政  李仕平
作者单位:1. 深圳市环境监测中心站,广东深圳,518049;2. 中山大学先进技术研究院,广州,510275
基金项目:国家科技支撑项目,国家自然科学基金项目
摘    要:根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。

关 键 词:PM_(2.5)  空间分布  统计预报  深圳

DISTRIBUTION CHARACTERISTICS AND PREDICTION OF PM2.5 IN SHENZHEN
LIN Chu-xiong,CHEN Jia-ye,LI Hong-xia,XU Wei-jia,YOU Yong,XU Jun-zheng,LI Shi-ping. DISTRIBUTION CHARACTERISTICS AND PREDICTION OF PM2.5 IN SHENZHEN[J]. Environmental Engineering, 2017, 35(5): 87-92. DOI: 10.13205/j.hjgc.201705019
Authors:LIN Chu-xiong  CHEN Jia-ye  LI Hong-xia  XU Wei-jia  YOU Yong  XU Jun-zheng  LI Shi-ping
Abstract:The spatial-temporal distribution characteristics of PM2.5 in Shenzhen were investigated based on the hourly PM2.5 monitoring data from Jan to Dec,2015.And then,a statistical partitioning prediction model of PM2.5 was also established.The average concentration of PM2.5 observed in Shenzhen was about 29.8 μg/m3,and the seasonal variation of PM2.5 concentration were sequenced as follows:winter > autumn > spring > summer.The diurnal distribution of PM2.5 presented a clear bimodal pattern with lower concentration appeared at 12:00-16:00.The average concentration in the southeast was relatively lower,while it was relatively higher in the northwest of the city.We found a strong connection between PM2.5 and PM10.The concentration of PM2.5 was positively correlated with SO2,NO2,CO and O3.The concentration of air pollutants in the adjacent cities had a certain relevance,which indicated that regional pollution was serious.Further,the study showed that the established statistical partitioning prediction model could capture the variation of PM2.5 successfully,with air quality forecasting accuracy rates above 70%.
Keywords:PM2.5  seasonal distribution  statistical forecast  Shenzhen
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号