首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg
Institution:1. Department of Environmental Science, Tezpur University, Tezpur 784028, India;2. Department of Environmental Studies, Visva Bharati, Bengal, India;3. Department of Public Health Sciences, University of Rochester, Rochester, NY, United States;1. Instituto de Física, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia;2. Instituto de Física, Universidade Federal de Alagoas, Maceió-AL 57072-970, Brazil;3. Instituto de Física, Universidade Estadual de Campinas - Unicamp, Campinas - SP 13083-859, Brazil;1. Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey, Guildford, GU2 7XH, United Kingdom;2. Environmental Flow (EnFlo) Research Centre, FEPS, University of Surrey, Guildford, GU2 7XH, United Kingdom
Abstract:Particle measurements were conducted at a road site 15 km north of the city of Gothenburg for 3 weeks in June 2000. The size distribution between 10 and 368 nm was measured continuously by using a differential mobility particle sizer (DMPS) system. PM2.5 was sampled on a daily basis with subsequent elemental analysis using EDXRF-spectroscopy. The road is a straight four-lane road with a speed limit of 90 kph. The road passing the site is flat with no elevations where the vehicles run on a steady workload and with constant speed. The traffic intensity is about 20,000 cars per workday and 13,000 vehicles per day during weekends. The diesel fuel used in Sweden is low in sulphur content (<10 ppm) and therefore the diesel vehicles passing the site contribute less to particle emissions in comparison with other studies. A correlation between PM2.5 and accumulation mode particles (100–368 nm) was observed. However, no significant correlation was found between number concentrations of ultrafine particles (10–100 nm) and PM2.5 or the accumulation mode number concentration. The particle distribution between 10 and 368 nm showed great dependency on wind speed and wind direction, where the wind speed was the dominant factor for ultrafine (10–100 nm) particle concentrations. The difference in traffic intensity between workday and weekend together with wind data made it possible to single out the traffic contribution to particle emissions and measure the size distribution. The results presented in combination with previous studies show that both PM2.5 and the mass of accumulation mode particles are bad estimates for ultrafine particles.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号