首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶
引用本文:石秋俊,刘安迪,唐柏彬,魏世强,张进忠.Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶[J].环境科学,2020,41(4):1725-1733.
作者姓名:石秋俊  刘安迪  唐柏彬  魏世强  张进忠
作者单位:西南大学资源环境学院,重庆市农业资源与环境重点实验室,重庆400715,西南大学资源环境学院,重庆市农业资源与环境重点实验室,重庆400715,重庆海关技术中心,重庆400020,西南大学资源环境学院,重庆市农业资源与环境重点实验室,重庆400715,西南大学资源环境学院,重庆市农业资源与环境重点实验室,重庆400715
基金项目:重庆市技术创新与应用示范专项重点研发项目(cstc2018jszx-zdyfxmX0002);国家重点研发计划项目(2018YFD0800601)
摘    要:为发展废水中抗生素的处理技术、保护水环境安全,采用浸渍法制备Ni掺杂Sb-SnO2微孔陶瓷环粒子电极,研究了电极对磺胺嘧啶(SDZ)的电催化氧化能力和动力学特征,初步分析了SDZ的降解途径.结果表明,粒子电极表面负载Ni和Sb-SnO2晶体,有利于电子传递和吸附SDZ,提高了电催化氧化效率;在NaCl浓度为0.02 mol·L-1、初始pH为8、电流密度为15 mA·cm-2、粒子电极投加量为15 g时处理15 min, 50 mg·L-1的SDZ能够被完全去除;处理3 h时,反应液TOC去除率达到80.8%,比二维电极高17.6%;电催化氧化SDZ的动力学过程符合一级反应动力学模型,去除速率常数为0.329 min-1.采用液相色谱-串联质谱分析法(LC-MS/MS)鉴定SDZ的降解产物,电催化降解SDZ可能包括磺酰胺基S—N键和嘧啶环上C—N键断裂、脱磺酸基、脱氨基和·OH氧化等途径.

关 键 词:Ni掺杂  Sb-SnO2粒子电极  电催化氧化  磺胺嘧啶  降解途径
收稿时间:2019/10/16 0:00:00
修稿时间:2019/11/15 0:00:00

Electrocatalytic Oxidation of Sulfadiazine with Ni-Doped Sb-SnO2 Ceramic Ring Particle Electrode
SHI Qiu-jun,LIU An-di,TANG Bo-bin,WEI Shi-qiang and ZHANG Jin-zhong.Electrocatalytic Oxidation of Sulfadiazine with Ni-Doped Sb-SnO2 Ceramic Ring Particle Electrode[J].Chinese Journal of Environmental Science,2020,41(4):1725-1733.
Authors:SHI Qiu-jun  LIU An-di  TANG Bo-bin  WEI Shi-qiang and ZHANG Jin-zhong
Institution:Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, China,Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, China,Technical Center, Chongqing Customs, Chongqing 400020, China,Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, China and Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, China
Abstract:The excessive use and abuse of antibiotics has brought about serious threats to water environmental safety and human health. It is necessary to develop efficient, cheap, and environmentally friendly treatment technologies for antibiotics. In this work, a Ni-doped Sb-SnO2 microporous ceramic ring particle electrode was prepared by the dipping method and characterized by scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction. The electrocatalytic oxidation ability and kinetic characteristics of sulfadiazine (SDZ) were studied using the prepared electrode, and the degradation pathways of SDZ were analyzed preliminarily. The results showed that Ni and Sb-SnO2 crystals were loaded on the particle electrode surface, which is beneficial for electron transfer and SDZ adsorption and improvement of electrocatalytic oxidation efficiency. Under the conditions of 0.02 mol·L-1 NaCl solution (pH 8), 15 mA·cm-2 of current density, and 15 g particle electrode, 50 mg·L-1 SDZ could be completely removed on the three-dimensional electrode within 15 min. The removal efficiency of TOC in the reaction solution reached 80.8% for 3 h degradation and was 17.6% higher than that with two-dimensional electrode. The kinetic process of the electrocatalytic oxidation could be well described by the first-order reaction kinetic model, and the rate constant was 0.329 min-1. The degradation products of SDZ were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the possible pathways of electrocatalytic degradation mainly include the fractures of S-N bond on sulfamido and C-N bond on pyrimidine ring, desulfonation, deamination, and·OH oxidation.
Keywords:Ni doping  Sb-SnO2 particle electrode  electrocatalytic oxidation  sulfadiazine  degradation pathways
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号