首页 | 本学科首页   官方微博 | 高级检索  
     


Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China
Authors:Sarah Schönbrodt-Stitt  Anna Bosch  Thorsten Behrens  Heike Hartmann  Xuezheng Shi  Thomas Scholten
Affiliation:1. Department of Geosciences, Chair of Physical Geography and Soil Science, University of Tuebingen, Ruemelinstra?e 19-23, 72070, Tübingen, Germany
2. College of Health, Environment and Science, Department of Geography, Geology and the Environment, Slippery Rock University, Slippery Rock, PA, USA
3. Institute of Soil Science, Department for Soil Resources and Remote Sensing Application, Chinese Academy of Sciences, Nanjing, People’s Republic of China
Abstract:In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km2) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ?mm?ha?1?h?1?a?1. With increasing altitudes, R a rises up to maximum 7,547 MJ?mm ha?1?h?1 a?1 at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a?=?1,986 MJ?mm?ha?1?h?1?a?1. The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号