首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study on sediment-copper distributions in hyper-concentrated turbulent solid-liquid system
Authors:YANG Jun and NI Jin-ren
Institution:1. Department of Environmental Engineering,Beihang University,Beijing 100083,China
2. College of Environmental Sciences,Peking University,Key Laboratory for Water and Sediment Sciences,Ministry of Education,Beijing 100871,China
Abstract:This study presents a special problem on vertical distribution for sediment and copper in hyper-concentrated turbulent solid-liquid system that is essentially different from the ordinary low-concentrated turbulent system. A resonance type turbulent simulation equipment is used for the experimental study in which a vertically uniform turbulent field of the mixture of loess and water is produced in a testing cylinder with a grille stirrer that moves up and down harmoniously with varying vibration frequencies. In order to compare the variations of the vertical profiles of sediment and copper in low- and hyper-concentrated solid-liquid system, different scenarios for input sediment content ranging from 5 to 800 kg/m3 was considered in the experimental studies. It was found that solids copper content increases with input sediment content, S0, and reaches its peak as S0 goes to 10 kg/m3 and then decreases rapidly with increasing input sediment content. Such a behavior is possibly resulted from the joint effect of the specific adsorption of copper on loess, precipitation of carbonate and hydroxide of copper due to high carbonate content in the loess and the so-called "particulate concentration effect" due to the present of the sediment variation in water. The vertical sediment concentration distribution resulted from the uniform turbulence is generally uniform, but slight non-uniformity does occur as sediment concentration exceeds certain value. However, the vertical concentration distributions of soluble copper seem not affected much by the variation of sediment concentrations.
Keywords:hyper-concentrated system  loess  copper  vertical sediment distribution  system  turbulent  concentrations  distributions  However  sediment concentration  value  concentration distribution  turbulence  present  variation  concentration effect  precipitation  carbonate content  hydroxide  high  behavior  joint effect  specific adsorption  decreases
本文献已被 CNKI 维普 万方数据 ScienceDirect PubMed 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号