首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41
Authors:Lee Ji-Hoon  Han Jaehong  Choi Heechul  Hur Hor-Gil
Institution:Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.
Abstract:Facultative anaerobic Shewanella sp. strain HN-41 was able to utilize selenite (Se(IV)) as a sole electron acceptor for respiration in anaerobic condition, resulting in reduction of Se(IV) and then precipitation of elemental Se nano-sized spherical particles, which were identified using energy-dispersive X-ray spectroscopy and X-ray absorption near-edge structure spectroscopy. When the effects on Se(IV) reduction to elemental Se were studied by varying incubation temperatures and dissolved oxygen contents, Se(IV) reduction occurred more actively with higher removal rate of Se(IV) in aqueous phase and well-shaped spherical Se(0) nanoparticles were formed from the incubations under N(2) (100%) or N(2):O(2) (80%:20%) at 30 degrees C with average diameter values of 181+/-40 nm and 164+/-24 nm, respectively, while relatively less amounts of irregular-shaped Se(0) nanoparticles were produced with negligible amount of Se(IV) reduction and removal under 100% of O(2). The Se particle size distributions based on scanning electron microscopy also showed a general tendency towards decreased Se particle size as oxygen content increased, whereas the particle size seemed uncorrelated to the change in the incubation temperature. These results also suggest that the size-controlled biological Se(0) nanospheres production may be achieved simply by changing the culture conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号