首页 | 本学科首页   官方微博 | 高级检索  
     检索      


160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier
Authors:Carl Linderholm  Alberto Abad  Tobias Mattisson  Anders Lyngfelt
Institution:aDepartment of Energy and Environment, Energy Technology, Chalmers University of Technology, 41296 Göteborg, Sweden;bInstituto de Carboquímica (CSIC), Department of Energy and Environment, Miguel Luesma Castán 4, Zaragoza 50018, Spain
Abstract:Chemical-looping combustion, CLC, is a technology with inherent separation of the greenhouse gas CO2. The technique uses an oxygen carrier made up of particulate metal oxide to transfer oxygen from combustion air to fuel. In this work, an oxygen carrier consisting of 60% NiO and 40% NiAl2O4 was used in a 10 kW CLC reactor system for 160 h of operation with fuel. The first 3 h of fuel operation excepted, the test series was accomplished with the same batch of oxygen carrier particles. The fuel used in the experiments was natural gas, and a fuel conversion to CO2 of approximately 99% was accomplished. Combustion conditions were very stable during the test period, except for the operation at sub-stoichiometric conditions. It was shown that the methane fraction in the fuel reactor exit gas was dependent upon the rate of solids circulation, with higher circulation leading to more unconverted methane. The carbon monoxide fraction was found to follow the thermodynamical equilibrium for all investigated fuel reactor temperatures, 660–950 °C. Thermal analysis of the fuel reactor at stable conditions enabled calculation of the particle circulation which was found to be approximately 4 kg/s, MW. The loss of fines, i.e. the amount of elutriated oxygen carrier particles with diameter <45 μm, decreased during the entire test period. After 160 h of operation the fractional loss of fines was 0.00022 h−1, corresponding to a particle life time of 4500 h.
Keywords:Chemical-looping combustion  Oxygen carrier  Fluidized bed
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号