首页 | 本学科首页   官方微博 | 高级检索  
     

基于GM(1,1)模型群的阿什河氨氮浓度的预测研究
引用本文:彭旭,刘柏音,刘敏,张颖. 基于GM(1,1)模型群的阿什河氨氮浓度的预测研究[J]. 环境科学与管理, 2011, 36(5): 173-176
作者姓名:彭旭  刘柏音  刘敏  张颖
作者单位:东北农业大学资源与环境学院;中国环境科学院;
摘    要:依据灰色系统理论,以2000年-2009年10年阿什河入江口断面枯水期氨氮浓度构造了一个由6个GM(1,1)模型组成的灰色动态模型群,并运用该模型群对其变化趋势进行了预测分析,得到令人满意的结果。研究表明,灰色动态模型群法能够充分利用近期水质资料信息预测未来水质变化趋势;以模型群统计平均值作为最终预测值,避免了单一灰色模型容易利用不稳定信息的缺陷,使得预测精度更加准确,预测结果更为可信。

关 键 词:阿什河  灰色动态模型群  氨氮  水质预测  

Prediction of Ashi River Water Quality Based on GM(1,1) Dynamic Model Group
Peng Xu,Liu Baiyin,Liu Min,Zhang Ying. Prediction of Ashi River Water Quality Based on GM(1,1) Dynamic Model Group[J]. Environmental Science and Management, 2011, 36(5): 173-176
Authors:Peng Xu  Liu Baiyin  Liu Min  Zhang Ying
Affiliation:Peng Xu1,Liu Baiyin2,Liu Min1,Zhang Ying1(1.Northeast Agricultural University,College of Resources and Environmental Sciences,Harbin 150010,China,2.Chinese Research Academy of Environmental Sciences,Beijing 100012,China)
Abstract:GM(1,1) dynamic model group is put forward made up of six simple gray models which created by concentration of NH3-N Ashi river estuary section during dry season.Then the model group is used to predict the trend of concentration of NH3-N.The result shows that the gray dynamic model group can make full use of the recent information about water quality to predict the future trend of water quality,and that prediction result stemming from gray dynamic model group is more accurate and reliable than that of a sim...
Keywords:Ashi river  gray dynamic model group  concentration of NH3-N  water quality prediction  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号