首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide
Authors:Chen Wan-Ru  Huang Ching-Hua
Institution:School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Abstract:Tetracycline antibiotics including tetracycline (TTC), oxytetracycline (OTC) and chlorotetracycline (CTC) undergo rapid transformation to yield various products in the presence of MnO2 at mild conditions (pH 4-9 and 22 °C). Reaction rates follow the trend of CTC > TTC > OTC, and are affected by pH and complexation of TCs with Mg2+ or Ca2+. Experimental results of TTC indicate that MnO2 promotes isomerization at the C ring to form iso-TTC and oxidizes the phenolic-diketone and tricarbonylamide groups, leading to insertion of up to 2 O most likely at the C9 and C2 positions. In contrast, reactions of OTC with MnO2 generate little iso-OTC, but occur mainly at the A ring’s dimethylamine group to yield N-demethylated products. CTC yields the most complicated products upon reactions with MnO2, encompassing transformation patterns observed with both TTC and OTC. The identified product structures suggest lower antibacterial activity than that of the parent tetracyclines.
Keywords:Oxytetracycline  Chlorotetracycline  Oxidation  Emerging contaminants  Pharmaceuticals
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号