首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation
Authors:Long Zhao  Hong Hou  Ayuko Fujii  Masaaki Hosomi  Fasheng Li
Institution:1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing, 100012, People’s Republic of China
2. Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
Abstract:This research investigated the 1,4-dioxane (1,4-D) degradation efficiency and rate during persulfate oxidation at different temperatures, with and without Fe2+ addition, also considering the effect of pH and persulfate concentration on the oxidation of 1,4-D. Degradation pathways for 1,4-D have also been proposed based on the decomposition intermediates and by-products. The results indicate that 1,4-D was completely degraded with heat-activated persulfate oxidation within 3–80 h. The kinetics of the 1,4-D degradation process fitted well to a pseudo-first-order reaction model. Temperature was identified as the most important factor influencing the 1,4-D degradation rate during the oxidation process. As the temperature increased from 40 to 60 °C, the degradation rate improved significantly. At 40 °C, the addition of Fe2+ also increased the 1,4-D degradation rate. Interestingly, at 50 and 60 °C, the 1,4-D degradation rate decreased slightly with the addition of Fe2+. This reduced degradation rate may be attributed to the rapid conversion of Fe2+ to Fe3+ and the production of an Fe(OH)3 precipitate which limited the ultimate oxidizing capability of persulfate with Fe2+ under higher temperatures. Higher persulfate concentrations led to higher 1,4-D degradation rates, but pH adjustment had no significant effect on the 1,4-D degradation rate. The identification of intermediates and by-products in the aqueous and gas phases showed that acetaldehyde, acetic acid, glycolaldehyde, glycolic acid, carbon dioxide, and hydrogen ion were generated during the persulfate oxidation process. A carbon balance analysis showed that 96 and 93 % of the carbon from the 1,4-D degradation were recovered as by-products with and without Fe2+ addition, respectively. Overall, persulfate oxidation of 1,4-D is promising as an economical and highly efficient technology for treatment of 1,4-D-contaminated water.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号