首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensory ecology in a changing world: salinity alters conspecific recognition in an amphidromous fish, Pseudomugil signifer
Authors:James E Herbert-Read  Deluxmi Logendran  Ashley J W Ward
Institution:(1) Centre for Research on Ecological Impacts of Coastal Cities, School of Biological Sciences, Marine Ecology Laboratories, A11, University of Sydney, Sydney, NSW, 2006, Australia
Abstract:Group fission and fusion processes are driven by state dependence, risk and the availability of information from others. Yet the availability of information changes under different environmental conditions, thus aiding or inhibiting group formation and maintenance. Chemical cues provide information on the location of individuals and can act as a mechanism for individuals to group together, although they can be greatly affected by environmental conditions. Using a flow channel, we studied how one shoaling fish species, the Pacific blue-eye (Pseudomugil signifer), responds to conspecific chemical cues (CCCs) in different environmental conditions (salinities). This species lives in estuarine environments, ranging in salinity from fresh to fully marine. P. signifer responded to CCCs in freshwater but not in saltwater. Furthermore, P. signifer did not respond to saltwater with CCCs added from freshwater. It took significantly longer for fish in saltwater, than in freshwater, to locate and join a shoal when only CCCs from the shoal were present. Finally, fish formed more cohesive shoals in freshwater than in brackish or saltwater. These results suggest that these fish do not rely on chemical cues in saltwater to locate conspecific shoals. Furthermore, the reduced amounts of these cues in saltwater may inhibit the maintenance of tight shoal structures. We suggest that fish utilise different sensory modalities in fresh or saltwater in order to locate one another, or the social structure of these groups is fundamentally different between these two water types. The importance of this study in relation to understanding how animals utilise and change different sensory modalities in varying environmental conditions is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号