首页 | 本学科首页   官方微博 | 高级检索  
     


Interrelationship of macropores and subsurface drainage for conservative tracer and pesticide transport
Authors:Fox Garey A  Malone Rob  Sabbagh George J  Rojas Ken
Affiliation:Dep. of Civil Eng., Univ. of Mississippi, 208 Carrier Hall, P.O. Box 1848, University, MS 38677-1848, USA. gafox@olemiss.edu
Abstract:Macropore flow results in the rapid movement of pesticides to subsurface drains, which may be caused in part by a small portion of macropores directly connected to drains. However, current models fail to account for this direct connection. This research investigated the interrelationship between macropore flow and subsurface drainage on conservative solute and pesticide transport using the Root Zone Water Quality Model (RZWQM). Potassium bromide tracer and isoxaflutole, the active ingredient in BALANCE herbicide [(5-cyclopropyl-4-isoxazolyl) [2(methylsulfonyl)-4-(trifluoromethyl)phenyl] methanone], with average half-life of 1.7 d were applied to a 30.4-ha Indiana corn (Zea mays L.) field. Water flow and chemical concentrations emanating from the drains were measured from two samplers. Model predictions of drain flow after minimal calibration reasonably matched observations (slope = 1.03, intercept = 0.01, and R(2) = 0.75). Without direct hydraulic connection of macropores to drains, RZWQM under predicted bromide and isoxaflutole concentration during the first measured peak after application (e.g., observed isoxaflutole concentration was between 1.2 and 1.4 mug L(-1), RZWQM concentration was 0.1 mug L(-1)). This research modified RZWQM to include an express fraction relating the percentage of macropores in direct hydraulic connection to drains. The modified model captured the first measured peak in bromide and isoxaflutole concentrations using an express fraction of 2% (e.g., simulated isoxaflutole concentration increased to 1.7 mug L(-1)). The RZWQM modified to include a macropore express fraction more accurately simulates chemical movement through macropores to subsurface drains. An express fraction is required to match peak concentrations in subsurface drains shortly after chemical applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号