首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Fuel Composition on Atmospheric Aerosol Due to Auto Exhaust
Authors:Wm. E. Wilson Jr.  D. F. Miller  A. Levy  R. K. Stone
Affiliation:1. Battelle, Columbus Laboratories;2. Chevron Research Company
Abstract:Aerosols attributable to automobile exhaust can be classified as two types—primary aerosol (initially present in the exhaust) and secondary aerosol (generated photochemically from hydrocarbons and nitrogen oxides in the exhaust). In this study, investigation was made of possible effects of motor-fuel composition on the formation of these aerosols. Secondary aerosol, of principal interest in this work, was produced by irradiating auto exhaust in Battelle-Columbus’ 610 ft3 environmental chamber. A limited number of determinations of primary aerosol in diluted auto exhaust was made at the exit of a 36 ft dilution runnel. Determination of both primary and secondary aerosol was based on light-scattering measurements.

Exhaust was generated with seven full-boiling motor gasolines, both leaded and nonleaded, in a 1967 Chevrolet which was not equipped with exhaust-emission control devices. Changes in fuel composition produced a maximum factor of three difference in light scattering due to primary aerosol. Aerosol yields, for consecutive driving cycles on the same fuel, vary considerably; as a result, ranking the fuels on the basis of average primary aerosol yield was not very meaningful. In addition to fuel composition, the more important independent variables are initial SO2 concentration, relative humidity and initial hydrocarbon concentration. Statistical analysis of the data indicates that the seven test fuels can be divided into two arbitrary groups with regard to secondary aerosol-forming potential. The fuels in the lower light-scattering group had aromatic contents of 15 and 21%, while those in the higher light-scattering group had aromatic contents of 25, 48, and 55%. Although the fuels can be grouped on the basis of a compositional factor, the grouping of fuels with aromatic content ranging from 25 to 55% indicates that this compositional factor cannot be equated simply with aromatic content. In an associated study of the aerosol-forming potential of individual hydrocarbons prominent in auto exhaust, it was observed that aromatics produce substantially more photochemical aerosol than olefins and paraffins. However, experiments with binar/hydrocarbon mixtures containing aromatjcs, as well as in these exhaust experiments, a strong dependence of aerosol yield on the aromatic components is is not observed. Thus, the data indicate that the dependence of secondary aerosol formation on fuel factors is a complex one and cannot be predicted solely on the basis of a sirigle hydrocarbon component reactivity scale.

The two types of automobile aerosol did not have the same dependence on fuel, composition. The variation in total light scattering attributable to primary plus secondary aerosol was less than that due to either component alone. It therefore was concluded that the light scattering due to automobile exhaust emissions in these experiments was not significantly affected by changing fuel composition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号