首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基质COD浓度对单室微生物电解池产甲烷的影响
引用本文:滕文凯,刘广立,骆海萍,张仁铎,符诗雨.基质COD浓度对单室微生物电解池产甲烷的影响[J].环境科学,2015,36(3):1021-1026.
作者姓名:滕文凯  刘广立  骆海萍  张仁铎  符诗雨
作者单位:中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510275
基金项目:国家自然科学基金项目(51308557,51179212,51278500); 广东省环境污染控制与修复技术重点实验室开放基金项目(2013K0002); 广东省水与大气污染防治重点实验室开放基金项目(GD2012A01); 教育部博士点新教师基金项目(20130171120022);教育部留学回国人员科研启动基金项目(教外司留[2014]1685号);中央高校基本科研业务费青年教师培育项目(2014800031610561)
摘    要:单室微生物电解池(microbial electrolysis cells,MEC)产甲烷过程中,底物COD浓度可同时影响阳极和阴极微生物的活性.为了探究COD浓度的影响,构建生物阴极型单室MEC,比较COD为700、1 000、1 350 mg·L-1情形下产甲烷速率和COD去除量随外加电压的变化规律,并计算MEC的能量效益.结果表明,随着COD的增加,产甲烷速率和COD去除量均呈增大趋势.随着外加电压的升高(0.3~0.7 V),低COD条件下MEC的产甲烷速率呈增大趋势,而在中、高COD条件下,产甲烷速率随着外加电压的升高先增大后减小;COD去除量的变化规律与产甲烷速率一致.当外加电压为0.5 V时,阴极电势降至最低值(-0.694±0.001)V,有利于产甲烷菌的富集,从而获得最高的产甲烷速率和能量回收率(约42.8%).COD浓度1 000mg·L-1和外加电压0.5 V时,MEC可获得最大的能量收益0.44 k J±0.09 k J(约1 450 k J·m-3).最终结果表明,MEC可利用低浓度COD废水生产甲烷,并且可获得正的能量效益,这为废水中化学能量的回收利用提供了新的研究思路.

关 键 词:微生物电解池  产甲烷  生物阴极  化学需氧量  电压
收稿时间:2014/8/22 0:00:00
修稿时间:2014/10/16 0:00:00

Influence of Substrate COD on Methane Production in Single-chambered Microbial Electrolysis Cell
TENG Wen-kai,LIU Guang-li,LUO Hai-ping,ZHANG Ren-duo and FU Shi-yu.Influence of Substrate COD on Methane Production in Single-chambered Microbial Electrolysis Cell[J].Chinese Journal of Environmental Science,2015,36(3):1021-1026.
Authors:TENG Wen-kai  LIU Guang-li  LUO Hai-ping  ZHANG Ren-duo and FU Shi-yu
Institution:Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Abstract:The chemical oxygen demand (COD) of substrate can affect the microbial activity of both anode and cathode biofilm in the single-chamber methanogenic microbial electrolysis cell (MEC). In order to investigate the effect of COD on the performance of MEC, a single chamber MEC was constructed with biocathode. With the change of initial concentration of COD (700, 1000 and 1350 mg·L-1), the methane production rate, COD removal and energy efficiency in the MEC were examined under different applied voltages. The results showed that the methane production rate and COD removal increased with the increasing COD. With the applied voltage changing from 0.3 to 0.7 V, the methane production rate increased at the COD of 700 mg·L-1, while it increased at first and then decreased at the COD of 1000 mg·L-1 and 1350 mg·L-1. A similar trend was observed for the COD removal. The cathode potential reached the minimum (-0.694±0.001) V as the applied voltage was 0.5 V, which therefore facilitated the growth of methanogenic bacteria and improved the methane production rate and energy efficiency of the MEC. The maximum energy income was 0.44 kJ±0.09 kJ (1450 kJ·m-3) in the MEC, which was obtained at the initial COD of 1000 mg·L-1 and the applied voltage of 0.5 V. Methanogenic MECs could be used for the treatment of wastewaters containing low organic concentrations to achieve positive energy production, which might provide a new method to recover energy from low-strength domestic wastewater.
Keywords:microbial electrolysis cell  methane production  biocathode  chemical oxygen demand  voltage
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号