首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度卷积神经网络的场地污染非线性反演方法
引用本文:能昌信,孙晓晨,徐亚,刘家琳,董路,刘玉强. 基于深度卷积神经网络的场地污染非线性反演方法[J]. 中国环境科学, 2019, 39(12): 5162-5172
作者姓名:能昌信  孙晓晨  徐亚  刘家琳  董路  刘玉强
作者单位:1. 山东工商学院信息与电子工程学院, 山东 烟台 264005;2. 中国环境科学研究院环境基准与风险评估国家重点实验室, 中国环境科学研究院固体废物污染控制技术研究所, 北京 100012;3. 山东工商学院计算机科学与技术学院, 山东 烟台 264005
基金项目:国家重点研发计划(2018YFC1800902)
摘    要:提出了将Sobel边缘检测算子与深度卷积神经网络(CNN)算法结合的方法(E-ConvNet),用于污染场地的ERT反演过程.通过Sobel算子提取污染区域视电阻率数据的边缘特征作为CNN的先验信息,提高E-ConvNet的计算效率及识别精度.在5种理论模型(单异常体、双异常体及含双异常体的层状结构)和现场实例上测试了E-ConvNet算法的性能,并与最小二乘算法(LS)比较.测试结果表明:E-ConvNet能够准确识别污染处的面积、位置及阻值,其识别精度和计算效率均优于LS.E-ConvNet的单异常识别准确率为81.8%~84.9%,而LS则仅为9.6%~36.2%;多异常识别准确率为68.6%~84.4%,LS仅为2.8%~27.6%;E-ConvNet用时约为112~190ms,LS耗时为6000~7000ms.因此,在污染场地调查工作中,E-ConvNet能够准确高效地反演出污染区域的位置及范围,为开展后续评估/修复工作提供技术支持.

关 键 词:污染场地  电阻率层析成像  深度卷积神经网络  边缘检测  
收稿时间:2019-05-14

A site pollution nonlinear inversion method based on deep convolutional neural network
NAI Chang-xin,SUN Xiao-chen,XU Ya,LIU Jia-lin,DONG Lu,LIU Yu-qiang. A site pollution nonlinear inversion method based on deep convolutional neural network[J]. China Environmental Science, 2019, 39(12): 5162-5172
Authors:NAI Chang-xin  SUN Xiao-chen  XU Ya  LIU Jia-lin  DONG Lu  LIU Yu-qiang
Affiliation:1. School of Information and Electronic Engineering, Shandong Technology and Business University, Shandong 264005, China;2. State Key Laboratory of Environmental Benchmarks and Risk Assessment, Research Institute of Solid Waste Management, Chinese Research Academy of Environment Science, Beijing 100012, China;3. School of Computer Science and Technology, Shandong Technology and Business University, Shandong 264005, China
Abstract:A novel nonlinear method named E-ConvNet was proposed for ERT inversion of contaminated sites, which combined Sobel edge detection operator with deep convolutional neural network algorithm (CNN). The edge features of apparent resistivity data in contaminated sites were extracted by the Sobel operator as the prior information feed into CNN, which improved computational efficiency and identification accuracy of E-ConvNet. The performance of E-ConvNet algorithm were testedon five theoretical model data (single anomaly, double anomalies, and layered structures with double anomalies) and field data, and then compared with results from the traditional Least Squares (LS) algorithm. The results showed that E-ConvNet can accurately identify the area, location and resistance of pollution, and its accuracy and computing efficiency were better than those of LS. The single anomaly recognition accuracy of E-ConvNet and LS were 81.8%~84.9% and 9.6%~36.2%, respectively; the multiple anomalies recognition accuracy of E-ConvNet and LS were 68.6%~84.4% and 2.8%~27.6%, respectively; the computing time of E-ConvNetis about 112~190ms,and the computing time of LS was 6000~7000ms. Therefore, E-ConvNet proposed in this study can accurately and efficiently inversed the polluted areas in the investigation of contaminated sites and provide technical support for the follow-up assessment/restoration work.
Keywords:contaminated site  electrical resistivity tomography  convolutional neural network  edge detection  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号