首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties
Authors:Fernanda Freitas Caregnato  Rafael Calixto Bortolin  Armando Molina Divan Junior  José Cláudio Fonseca Moreira
Institution:1. Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ramiro Barcelos, 2600, Anexo, CEP 90035-003, Porto Alegre, RS, Brazil;2. Laboratório de Bioindicação Vegetal, Centro de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43411, CEP 91501-970, Porto Alegre, RS, Brazil
Abstract:Ozone (O3) has become one of the most toxic air pollutants to plants worldwide. However, investigations on O3 impacts on crops health and productivity in South America countries are still scarce. The present study analyzed the differences on the enzymatic and non-enzymatic antioxidant system in foliar tissue of two subtropical Phaseolus vulgaris varieties exposed to high O3 concentration. Both varieties were negatively impacted by the pollutant, but the responses between each variety were quite distinct. Results revealed that Irai has higher constitutive levels of reactive oxygen species (ROS) and ascorbate (AsA) concentration, but lower total thiol levels and catalase immunocontent. In this variety catalase protein concentration was increased after O3 exposure, indicating a better cellular capacity to reduce hydrogen peroxide. On the opposite, Fepagro 26-exposed plants increased ROS generation and AsA concentration, but had the levels of total thiol content and catalase protein unchanged. Furthermore, O3 treatment reduced the levels of chlorophylls a and b, and the relationship analysis between the chlorophyll ratio (a/b) and protein concentration were positively correlated indicating that photosynthetic apparatus is compromised, and thus probably is the biomass acquisition on Fepagro 26. Differently, O3 treatment of Irai did not affect chlorophylls a and b content, and loss on the protein content was lower. Altogether, these data suggest that early accumulation of ROS on Fepagro 26 are associated with an insufficient leaf antioxidant capacity, which leads to cell structure disruption and impairs the photosynthesis. Irai seems to be more tolerant to O3 toxic effects than Fepagro 26, and the observed differences on O3 sensitivity between the two varieties are apparently based on constitutive differences involved in the maintenance of intracellular redox homeostasis.
Keywords:Antioxidant capacity  Ozone  Phaseolus vulgaris  Reactive oxygen species  Redox balance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号