首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of air permeability in layered unsaturated materials
Authors:Switzer Christine  Kosson David S
Institution:Department of Civil and Environmental Engineering Vanderbilt University Box 1831, Station B Nashville, TN 37235, USA.
Abstract:Field estimation of air permeability is important in the design and operation of soil-vapor extraction systems. Previous models have examined airflow in homogenous soils, incorporating leakage through a low-permeability cap either as a correction to the airflow equation or as a boundary condition. The dual leakage model solution developed here improves upon the previous efforts by adding a leaky lower boundary condition, allowing for the examination of airflow in heterogeneous layered soils. The dual leakage model is applied to the evaluation of pump tests at a pilot soil-vapor extraction system at the Savannah River Site in South Carolina. A thick, low-permeability, stiff clay layer divides the stratigraphy at the site into two units for evaluation. A modified version of the previous model, using the water table as the impermeable lower boundary, is used to evaluate the permeability of the low-permeability stiff clay layer (3.2 x 10(-10) cm(2)) and permeable sand (7.2 x 10(-7) cm(2)) beneath it. The stiff clay permeability estimate is used in the evaluation of the shallow unit. Permeability estimates of the shallow sand (3.8 x 10(-7) cm(2)) and kaolin cap (1.5 x 10(-9)cm(2)) were obtained with the dual leakage model. The shallow unit was evaluated using the previous model for comparison. The effects of anisotropy were investigated with a series of model simulations based on the shallow unit solution. The anisotropy sensitivity analysis suggests that increased anisotropy ratio or decreased axial permeability has a significant impact on the velocity profile at the lower boundary, especially at high values of the anisotropy ratio. This result may increase estimates of SVE removal rates for contaminants located at the interface of the lower boundary, typical of chlorinated solvent contamination.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号