首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers
Authors:Uri Zoller  Alla Reznik
Institution:Faculty of Science and Science Education-Chemistry, Haifa University-Oranim, Kiryat Tivon 36006, Israel. uriz@research.haifa.ac.il
Abstract:SCOPE AND BACKGROUND: Contamination of soils, aquifers and groundwater by nonaqueous phase liquid (NAPL) pollutants constitutes a major environmental issue of concern, worldwide. The residual (biodegradation-resistant) hydrophobic fuel hydrocarbons entrapped in the soil porous matrix, possess a particular bioremediation challenge due to their becoming virtually immobile, nor desorbable, or water dispersible. Consequently, they are not available as substrates to the micro-organism-based biodegradation. MATERIALS AND METHODS: Our research involves the development of economically feasible, surfactant/surfactant-nutrient mix (SSNM)-enhanced bioremediation methodologies for sustainable, in situ bioremediation of fuel-contaminated aquifers. This requires, methodologically, (a) the optimization, via in vitro 'flow' (columns) lab experiments and screening processes, of an effective mixture for the intended SSNM-enhanced bioremediation; and (b) the study of the combined effect of the optimized SSNM on the solubilization/mobilization and biodegradation of NAPL (fuel) in in vitro site/aquifer-simulated bioremediation. RESULTS AND DISCUSSION: The essence of our findings: (1) kerosene's maximum enhanced mobilization - f = 3.6, compared with that of deionized water, was achieved with an SSNM having the composition of linear alkylbenzene sulfonate (LABS): coco-amphodiacetate (containing N): surfactant-nutrient X (containing both N and P) = 0.15: 0.15: 0.05 g/L, respectively; (2) 62-64% of the initial amount of kerosene in the initially saturated soil matrix, 'packed' in a column, has been eluted from it during approximately 30 days, compared with 68% of kerosene biodegradation in 'vessel' settings, in 21 days. CONCLUSIONS: (1) The indigenous microorganisms present in th vadose zones of fuel-contaminated sandy soil aquifers are potentially capable of unassisted removal of approximately 80% of the initially contained fuel (kerosene), during a period of about 42 days; (2) the major effects of the SSNM addition are (a) enhanced mobilization of the bulky NAPL; and (b) enhanced desorbtion/ solubilization/dispersion of the entrapped NAPL which, in turn, facilitate their enhanced biodegradation. RECOMMENDATIONS AND PERSPECTIVE: Our findings suggest that pre-optimized, biodegradable SSNM is essential for surfactants-based bioremediation of NAPL-contaminated aquifers, in order to make this in-situ methodology both technologically and economically feasible.
Keywords:Aquifers  bioremediation  kerosene  mobilization  nonaqueous phase liquids (NAPLs)  soil  surfactants-surfactant-nutrient mix  toluene
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号